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Abstract

Social robot navigation requires that the robot follows social norms while navigat-
ing towards its goal. Current algorithms model pedestrians as independent agents,
making the problem computationally intractable and degrading overall performance
in dense human crowds. In this work, we explore various ways to enhance the
robot’s performance in environments with a higher number of pedestrians and aim
to achieve well-behaved scaling. Specifically, we compare different approaches
common in the literature such as state reduction, reward shaping, and curriculum
learning. We find that the use of curriculum learning closely approximates optimal
(human-like) behavior. This report serves as a supplemental information to the
presentation. Please refer to the presentation for the results of the experiments
including animated visualizations.

1 Introduction

In the context of social robot navigation, the primary goal is for the robot to reach its target while
sharing space with humans and other entities, ensuring that it avoids any collisions in the process. A
particularly complex issue in the development of social robot motion plans is the management of
increasing computational complexity when avoiding dynamic obstacles. Current methods largely
depend on simulating interactions on a one-to-one basis. However, early findings indicate that the
computational load escalates significantly with the addition of more individuals, presenting scalability
challenges at larger scales. Furthermore, several techniques that were introduced that intended to
enhance scalability—like attention mechanisms (1; 2)—have shown limited efficacy in improving
performance.

When the obstacles have structured dynamics (e.g., grouped crowds (3)), we hypothesize that
Reinforcement Learning (RL) agents can be trained to navigate dynamic obstacles effectively, even
in scenarios with a large number of individual obstacles using appropriate engineering of the state
representation as well as a properly engineered reward function which we expect to be the main
difficulties in achieving a strong policy.

Solving this challenge will help in ensuring safety, as robots must navigate without posing risks to
humans. Additionally, it can significantly boost operational efficiency in various settings, such as
healthcare and logistics, by improving the robot’s speed. Achieving natural and unobtrusive robot
navigation is crucial for public acceptance, as it requires robots to understand and predict human
behaviors to coexist comfortably.

2 Related Work

Navigating in human-populated environments poses some significant challenges that have been
addressed in literature. One such method, namely (4), is the integration of social norms and behaviors
into robot path planning. The work investigates the incorporation of social behavior models into the
decision-making processes of robots. Similar approach (1), where attention mechanisms are utilized
to enhance the robot’s awareness of the crowd’s dynamics. The work emphasizes the importance of

6.8200 Computational Sensorimotor Learning Final Project (Spring 2024).



“pooling” the different elements of the crowd to improve navigation strategies in complex, densely
populated environments. Other work (2) further builds on these ideas by proposing a model that
recognizes and respects the cohesive nature and not to intrude into pedestrian groups. (3) extends
these ideas by specifically focusing on predicting the motion of groups in crowded settings.

Another line of work focuses on avoiding freezing behavior. (5) introduces a novel concept of creating
temporary freezing zones around pedestrians to ensure safety without halting the robot’s movement
completely.

3 Problem Formulation

In social robot navigation, the goal is to learn a control policy that allows a robot to navigate to a
target location while sharing space with pedestrians (6). An optimal policy should minimize the
number of steps required to reach the target location while avoiding collisions and adhering to social
norms. This task can be formulated as a Markov decision process. In particular, if K is the total
number of pedestrians, the state and action spaces can be defined as follows:

State space S: For each pedestrian i ∈ [N ]1 in the scene, their observable state information is
captured by the following vector:

pedi = (pix, p
i
y, v

i
x, v

i
y, r

i) (1)

where pix and piy are the pedestrian’s x and y coordinate, vix and viy are the pedestrian’s x and y
velocity, and r is the radius of the pedestrian. For the robot, the state information vector is defined as:

rob = (px, py, vx, vy, r, gx, gy) (2)

where the first four quantities are as defined for the pedestrians, gx and gy are the x and y coordinates
of the goal. Therefore, a state s ∈ S that describes the full state of the environment at a particular
point in time will be given by:

s = (rob, ped1, ped2, · · · , pedN ) (3)

We note that such state representation is common in the literature (4).

Action space A: We assume holonomic kinematics for the robot. That is, the robot can move in any
direction independent of its current orientation (i.e. it’s last step direction). Thus, the actions a ∈ A
can be described by a tuple (vax, v

a
y) where vax and vay are the one step x and y velocity vector (i.e.,

(px)t+1 = (px)t +∆t(vx + vax) where ∆t is the discretization of time).

Dynamic model: Several models are considered for our choice of the dynamic model. The Social
Force Model is a dynamic model that conceptualizes human behavior within social contexts as a
sum of forces on a particle. Essentially, the model treats individuals as particles subject to social
forces—such as attraction to a destination or repulsion from other individuals—which influence their
motion. These forces represent the “internal impulses” that drive individuals towards their goals
while avoiding obstacles (7). Another notable dynamic model is the Optimal Reciprocal Collision
Avoidance (ORCA) (8). ORCA functions as a dynamic model by continuously adapting to the
changing positions and velocities of multiple agents within a shared environment under reciprocal
assumptions. Note that both models are reactive methods in multi-agent navigation setting (1).

Objective function: Let dgoal (t) be the distance of the agent to goal at time t. dcoll. is the fixed
collision distance. ddisc. is the fixed discomfort distance.

The objective is to find a policy which makes the agent we want to control reaches the
goal (dgoal (T ) < dcoll. ) for some value T while ensuring not to collide with pedestrians∑

i 1 (di(t) < dcoll. ) = 0,∀t : 0 ≤ t ≤ T while also minimizing the discomfort criteria∑
i (ddisc. − di(t))1 (dcoll. ≤ di(t) ≤ ddisc. ).

Success Criterion: We define the success criterion for a single episode of the environment if the
agent manages to reach the goal (dgoal (T ) < dcoll. ) within the time limit without colliding with any
pedestrians. If the time limit is reached or the agent collides with a pedestrian then the episodes
terminates with a failure. Additionally, if the agent intrudes into a group, the episode terminates with
a failure. Note that the aforementioned condition will be relaxed in the curriculum learning setting.

1For any integer n ∈ Z+, we define [n] := {1, 2, . . . , n}.
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Reward function R(t): Several reward function designs exist for social robot navigation. In this
project, we aim to identify a suitable reward function that allows for group abstraction. Initially,
we adjust the reward function defined in (2) to account for group abstraction. For the updated state
vector, we drop the group intrusion cost in (2) and their reward function is reduced to:

R(t) =Cprog. (dgoal (t− 1)− dgoal (t))

+ Cgoal 1 (dgoal (t) < dcoll. )

− Cdisc.

∑
i

(ddisc. − di(t))1 (dcoll. ≤ di(t) ≤ ddisc. )

− Ccoll.

∑
i

1 (di(t) < dcoll. )

(4)

where Cprog. is progression reward, Cgoal is getting to goal reward, Cdisc. is the discomfort cost and
Ccoll. is the collision cost. Where the objective is to maximize the cumulative discounted rewards.

Base Learning Algorithm: We intend to use Proximal Policy Optimization (PPO) as our base
learning algorithm, as it is a natural fit for our problem, and GroupNav (2) which is a social robot
navigation algorithm based on PPO. In the following section, we describe the specific changes we are
proposing to our algorithms of choice.

4 Experiments Details

In this section, we provide further details for the results shown in the presentation.

4.1 Reduced state representation

In our first experiment, we modify GroupNav to reduce the dimensionality of the state space S.
Initially, we assume the knowledge of group membership. This assumption is reasonable since there
exist a number of group identification algorithms, such as (9), which can be used as an input to our
work. Let {G1, G2, ·, Gk} be a grouping of the pedestrian, such that Gi ∩ Gj = ϕ if i ̸= j and
G1 ∪G2 ∪ · · · ∪Gk = [N ]. We define the group centroid’s position and velocity as:

(pGj
x , pGj

y , vGj
x , vGj

y ) =
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For rGj , we define it as the minimum radius (from the group centroid (p
Gj
x , p

Gj
y )) that covers all the

penetrations in a group Gj . Thus, the reduced state representation will be:

groupj = (pGj
x , pGj

y , vGj
x , vGj

y , rGj ) (6)

sreduced = (rob, group1, group2, · · · , groupK) (7)
Hence, using the reduced state representation reduces the group to a circle defined by the group
centroid (p

Gj
x , p

Gj
y ) and radius rGj . Note that the robot information vector rob remains unchanged.

4.2 Reward shaping

For reward shaping, our goal is to incentivize the agent to anticipate the pedestrian path and avoid it.
First, we try modifying the value of Cdisc. . Moreover, we consider the alternative reward function:

R(t) =Cprog. (dgoal (t− 1)− dgoal (t))

+ Cgoal 1 (dgoal (t) < dcoll. )

− Cavoid.

∑
i

(ddisc. − di(t))

− Ccoll.

∑
i

1 (di(t) < dcoll. )

(8)
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Notice in this modified function we remove the binary indicator from the third term, leading to a
smoother function. In the presentation, we show the training performance versus different values of
Cavoid. .

4.3 Curriculum Learning

In our previous experiments, we notice that the models seem to always prefer walking in a straight
line towards the goal without avoiding pedestrians which causes a collision and a failed termination.
Thus, we hypothesize that the original environment is too difficult for models to learn from and
models were stuck in local optimums where they exhibit the behaviour of walking in a straight path
towards the goal without attempting to avoid obstacles or learning a more complicated path-finding
behavior.

Thus, we develop a modified environment that is considerably easier and less punishing to the agent
by relaxing the group intrusion termination condition. Training on this simpler environment made the
agents quickly learn some basic obstacle-avoiding behavior due to the environment being simpler
and less punishing, then we transfer this agent to the more difficult environment (the original one)
which causes it to have a strong head-start in performance. At the end of training, the agent achieves
an increased success rate in the original environment (70% success rate) compared to other models
that were not given a curriculum to learn from (60% success rate).

5 Conclusions

In this project, we investigate the role of different methodologies attempting to improve the scaling
behavior of the pedestrian navigation environment as we increase the number of human pedestrians.
We show that state reduction for the problem of social robot navigation offers slight improvements in
learning efficacy for models. Moreover, models trained in stricter environments tended to get stuck in
local optimums. As the number of humans in the simulation increased, the models struggle to escape
these local optimums. To address this, the implementation of curriculum learning proved beneficial.
Thus, the use of curriculum learning shows a promising direction to find policies that mimic human
behavior to navigate densely populated environments more effectively.
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