
Broyden updates; Quasi-Newton methods for nonlinear systems of equations1

Abdulrahman Alabdulkareem∗2

3

Abstract. In this work, we give a brief history of the root-finding problem and the use of Newton’s method.4
Then, we discuss Quisi-Newton methods and derive both types of Broyden Updates along with an5
efficient implementation of the algorithm. We run our implementation of both types of Broyden6
Updates along with Newton’s method and an implementation of Broyden Updates provided by the7
Scipy library on two realistic real world problems. We finally discuss the application of Broyden8
Updates in many different areas of science and the different variants of the algorithm that were later9
proposed.10

Key words. Broyden Updates, Quasi-Newton methods11

AMS subject classifications. 68Q25, 68R10, 68U0512

1. Introduction.13

1.1. The root-finding problem. The root-finding problem is the problem of finding a14

solution to a non-linear system of equations. Root-finding problems arise in many areas of15

science whether it’s engineering, statistics, social sciences, and many others. The history of16

such algorithms date back decades ago where Newton developed an algorithm to find roots of17

polynomials.18

The general root-finding problem is defined as finding a point x∗ ∈ Rn such that it satisfies19

(1.1) f(x∗) = 020

Where f : Rn → Rn.21

As mentioned in [31], the history of solutions and algorithms for the root-finding problem22

and the analysis of such algorithms depends on properties on f . If we take f to be a linear23

n-dimensional system of equations then we can find extensive study in the works of Golub [9],24

Stewart [34], and Young [41].25

For the case or f being a 1 dimensional system of non-linear equations then we can refer26

to Heitzinger [11], Householder [12], and Traub [35].27

However, we are interested in the intersection of the above two cases where f in Equa-28

tion (1.1) is both n-dimensional and a non-linear system of equations. When an analytic29

inverse of f is not trivially available, then we can use iterative methods to solve such a prob-30

lem. Iterative methods are a class of algorithms that find a better approximate to the solution31

with each step of the algorithm.32

1.2. Newton’s Method. The first iterative root finding method was proposed by Newton33

more than 300 years ago which is referred to as ”Newton’s Method” [39], or sometimes referred34

∗Department of Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA.
(arkareem@mit.edu).

1

This manuscript is for review purposes only.

mailto:arkareem@mit.edu


2 A. ALABDULKAREEM

to as the ”Newton-Raphson Method” [42, 39] referring to Joseph Raphson who later proposed35

the same method after Newton [39, 3].36

The motivation begins with a taylor expansion of f and a random initial guess x0 for x∗37

to get38

(1.2) f(x0 +∆x) ≈ f(x0) + J(x0)∆x39

Our goal is to find a new guess x1 = x0 +∆x that fulfills40

(1.3) f(x∗) = 0⇒ f(x0 +∆x) = 0⇒ f(x0) + J(x0)∆x = 0⇒ ∆x = J(x0)
−1f(x0)41

Where x0 is some initial guess, and42

(1.4) where xn =

x
(1)
n
...

x
(N)
n

 and F (xn) =

 f1(xn)
...

fM (xn)

43

and J(xn) is the Jacobian of F at xn44

(1.5) J(xn) = J(x)|x=xn , J(x) =


∂f1(x)

∂x(1) . . . ∂f1(x)

∂x(N)

...
. . .

...
∂fM (x)

∂x(1) . . . ∂fM (x)

∂x(N)

45

Thus we get the update step that46

(1.6) ∆xn = J(xn)
−1F (xn)47

And thus we get the n-dimensional version of Newton’s method which iteratively solves48

Equation (1.1) written as49

(1.7) Newtons method : xn+1 = xn − J(xn)
−1F (xn),50

A problem that might seem apparent from the above update step is that we need to51

calculate the inverse of the Jacobian in each iteration, which would be very expensive for an52

(N ×M) matrix. However, this issue can be trivially avoided by solving the linear system53

J(xn) ∗ v = F (xn) instead of actually computing the inverse of the Jacobian to get v =54

J−1
(xn)
∗ F(xn).55

1.3. Computational Complexity of Newton’s Method. The real major problems with56

Newton’s method is that, in most real-world problems, it is incredibly computationally ex-57

pensive to calculate the Jacobian. If all the functions have partial derivatives with analytical58

solutions which means the Jacobian is directly available, then we still need to evaluate (N ∗M)59

This manuscript is for review purposes only.



BROYDEN UPDATES; QUASI-NEWTON METHODS FOR NONLINEAR SYSTEMS OF EQUATIONS 3

complicated functions which is expensive. On the other hand, if we don’t have analytical func-60

tions for the partial derivatives, then we would need to evaluate each function fi (n+1)-times61

to obtain an approximation of the Jacobian using finite-difference approximation (technically62

this would be using the secant method and not Newton’s method if we were to use finite-63

differences to calculate the Jacobian).64

In either case calculating the Jacobian is expensive, and this needs to be done every single65

iteration of Newton’s method [43].66

1.4. Quasi-Newton methods. To overcome the computational burden with Newton’s67

method, Quasi-Newton methods were developed. The class of Algorithms called Quasi-Newton68

methods is referred to root-finding algorithms that don’t directly compute the Jacobian. The69

simplest Quasi-Newton method is simply calculating the Jacobian once J(x0 ) and then use70

that for all iterations, which is clearly not very good as it will diverge in all cases where J(x0)71

doesn’t directly point to the optimal solution. Another very simple Quasi-Newton method is72

to calculate the Jacobian once every k-steps.73

This is the context where the algorithm for Broyden’s updates was developed in 1965 [5],74

The idea at a high level is that the Jacobian J(xn ) can be approximated using the Jacobian75

at the previous step J(x(n−1) ) along with other components that were already calculated in76

this current iteration.77

2. Brief Derivation of Broyden Updates. The update step of the Jacobian must fulfil78

the following the secant equation to be a valid new Jacobian79

(2.1) Jn+1(xn+1 − xn) = F (xn+1)− F (xn)80

However the above system is underdetermined, so we assume that the Jacobian only81

updated in the direction of (xn+1 − xn) which means82

(2.2) ∀v s.t. vT ((xn+1 − xn)) = 0, we have Jn+1v = Jnv83

(2.3) Jn+1v = Jnv ⇒ (Jn+1 − Jn)v = (∆Jn)v = 084

Which means that the Jacobian does not change for any direction that is perpendicular85

to the change in x.86

We still have many choices for ∆Jn that fullfil both Equation (2.1) and Equation (2.2)87

so we employ another assumption that ∆Jn is a rank 1 matrix. These two assumptions give88

us a unique value of ∆Jn, here’s how we calculate that. First a rank 1 matrix fulfilling89

Equation (2.2) must be written ∆Jn = w(xn+1 − xn)
T for some free choice of w. Then we90

plug this into Equation (2.1) to get the value of w91

(Jn + w(xn+1 − xn)
T )(xn+1 − xn) = F (xn+1)− F (xn)(2.4a)92

w = ((F (xn+1)− F (xn))− Jn(xn+1 − xn))/((xn+1 − xn)
T (xn+1 − xn))(2.4b)9394

This manuscript is for review purposes only.



4 A. ALABDULKAREEM

Thus we get the update equation for the Jacobian95

Jn+1 = Jn + (∆Jn) = Jn + w(xn+1 − xn)
T(2.5a)96

Jn+1 = Jn + ((F (xn+1)− F (xn))− Jn(xn+1 − xn))
(xn+1 − xn)

T

(xn+1 − xn)T (xn+1 − xn)
(2.5b)97

98

Using ∆xn = (xn+1 − xn) and ∆Fn = F (xn+1)− F (xn) we get the simple expression99

(2.6) Jn+1 = Jn + (∆Fn − Jn∆xn)
∆xTn

∆xTn∆xn
100

The above two assumptions that Broyden makes gave us a unique update step ∆Jn which101

just so happens to minizimize the Frobenius norm for all matrices that fulfil the secant con-102

dition Equation (2.1)103

(2.7) ∆Jn = arg min
∆Jn∈S

∥∆Jn∥F where ∀S ∈ S, (2.1) is true104

However, we can work directly on the inverse of the Jacobian by taking advantage of105

the Sherman–Morrison formula [2] where the inverse of a rank one updated matrix A−1
n+1 =106

(An + uvT )−1 can be written as107

(2.8) A−1
n+1 = A−1

n −
A−1

n uvTA−1
n

1 + vTA−1
n u

108

Plugging in Jn = An and v = ∆xn and u = w we get109

J−1
n+1 = J−1

n −
J−1
n

(
∆Fn−Jn∆xn

∆xT
n∆xn

)
(∆xn)

TJ−1
n

1 + (∆xn)TJ
−1
n

(
∆Fn−Jn∆xn

∆xT
n∆xn

) = J−1
n +

(
∆xn − J−1

n ∆Fn

)
∆xTnJ

−1
n

(∆xTnJ
−1
n ∆Fn)

(2.9a)110

111

With that, Equation (2.9a) gives us what is called the Type 1 Broyden Update for the112

Jacobian. Now, just like Newton’s update we utilize the updated inverse of the Jacobian to113

get our new value of x using Equation (1.6)114

2.1. Broyden Updates Type 2. Another set of assumptions (specifically Equation (2.2)115

is changed to be a change only in the direction of ∆f) end up minimizing the Frobinius norm116

of the change in the inverse of Jacobian [15]117

(2.10) ∆J−1
n = arg min

∆J−1
n ∈S

∥∆J−1
n ∥F where ∀S ∈ S, (2.1) is true118

And we end up with the update equation119

(2.11) J−1
n+1 = J−1

n +

(
∆xn − J−1

n ∆Fn

)
∆F T

n

(∆F T
n ∆Fn)

120

Which gives us what is known as Type 2 Broyden Updates.121

This manuscript is for review purposes only.



BROYDEN UPDATES; QUASI-NEWTON METHODS FOR NONLINEAR SYSTEMS OF EQUATIONS 5

3. Algorithm. Initially, we start with a guess x0 and evaluate F (x0) and for the only122

time in the algorithm, explicitly calculate the Jacobian at the initial guess J(x0) (we discuss123

initializing the Jacobian further in subsection 3.1 where we never actually calcualte the Jaco-124

bian). After that, we start the loop until convergence (The convergence condition is discussed125

in subsection 3.2). As with regular Newton’s method, the update rule for x is126

(3.1) xn = xn−1 − J(xn−1)
−1F (xn−1)127

(In subsection 3.3 we discuss a modification to the update rule using a line search update)128

And the update rule for the inverse of the Jacobian is129

(3.2) J−1
n+1 = J−1

n + (∆xn − J−1
n ∆fn)

∆xTk J
−1
n

∆xTk J
−1
n ∆fn

130

We can take out from the right side the matrix J−1
n131

(3.3) J−1
n+1 =

(
I + (∆xn − J−1

n ∆fn)
∆xTk

∆xTk J
−1
n ∆fn

)
∗ J−1

n132

We can see the recursive pattern. To fully take advantage of that we can define two new133

variable an = (∆xn − J−1
n ∆fn) and bTn =

∆xT
k

∆xT
k J−1

n ∆fn
to get134

(3.4) J−1
n+1 =

(
I + anb

T
n

)
∗ J−1

n135

Thus we only need to store ai ∈ Rn and bi ∈ Rn for i = 1, . . . , k to calculate J−1
n which136

requires O(kn) space instead of O(n2). This also means that once the number of iterations137

exceeds a threshold (k > n), it is more efficient to store the entire matrix J−1
n instead of the138

individual vectors that construct it. This condition (referred to as collapse) can be seen in the139

official implementation of Broyden’s method in the scipy module[38] for python in the exact140

line 671 in the file ” nonlin.py” 1141

We have opted not to implement a collapse since we have noticed that all our experiments142

terminated with the number of iterations less than n which means the algorithm converged143

before a collapse would have happened.144

A similar process is implemented for Type 2 Broyden Updates where Equation (2.11) give145

us that an =
(
∆xn − J−1

n ∆Fn

)
and bn = ∆FT

n

(∆FT
n ∆Fn)

146

(3.5) J−1
n+1 = J−1

n +
(
I + anb

T
n

)
147

(Notice how Equation (3.4) we have a recursive multiplication while in Equation (3.5) we148

have a recursive summation which makes a slight difference in the implementation)149

1https://github.com/scipy/scipy/blob/main/scipy/optimize/ nonlin.py#L671

This manuscript is for review purposes only.



6 A. ALABDULKAREEM

3.1. Initial Jacobian Estimate. For the initial Jacobian estimate, we could explicitly150

approximate the Jacobian using a finite difference approximation, however, that tends to still151

take a significantly long time especially when the problem is high dimensional. So instead, we152

use a technique from [14] and set the initial jacobian to the Identity matrix times a constant153

as follows154

(3.6) J0 =
1

α
∗ I and J−1

0 = α ∗ I155

For the choice of alpha it should depend on the problem and a bad choice of alpha can156

make the algorithm diverge or converge extremely slowly. The decision by [14] for all their157

calculations is to use α = 0.3. However, we have experimented and used the reciprocal of the158

initial norm of F , this seems to be stable159

(3.7) α =
−1

∥F (0)∥2
160

3.2. Convergence Condition. For the convergence of our algorithm we simply check that161

the L2 norm of the function is less than a small value ϵ which we pick to be ϵ = 6e − 6 thus162

we terminate once163

(3.8) ∥F (xn)∥2 ≤ 6e− 6164

3.3. Line Search Update. We have found that the convergence of Broyden updates is165

much more guaranteed if we utilize some form of Iterative procedure (particularly a Line166

Search update) in each iteration of the Broyden update. As [26] describes in section 3.5 ”For167

general nonlinear functions, it is necessary to use an iterative procedure. The line search168

procedure deserves particular attention because it has a major impact on the robustness and169

efficiency of all nonlinear optimization methods.”170

Concretely, instead of updating our guess xn as follows171

(3.9) xn = xn−1 − J(xn−1)
−1F (xn−1)172

We instead partially take a step towards the update direction as follows173

(3.10) xn = xn−1 − αnJ(xn−1)
−1F (xn−1) where αn ∈ (0, 1]174

The particular choice of α depends on the line search algorithm used. Frist let’s define175

ϕ(α) to be the squared L2 norm of the function evaluated when α is our step length:176

(3.11) ϕ(α) = ∥F
(
xn − αJ(xn)

−1F (xn)
)
∥22177

This manuscript is for review purposes only.



BROYDEN UPDATES; QUASI-NEWTON METHODS FOR NONLINEAR SYSTEMS OF EQUATIONS 7

We start the algorithm with αk = 1 then ’backtrack’ by slightly decreasing α until the178

following update condition is fulfilled179

(3.12)
ϕ(αk)− ϕ(0)

αk − 0
≤ −ϵ ∗ ϕ(0)180

The update step for α is then a cubic interpolation of ϕ(0) −ϕ(0) and the most recent181

value ϕ(α) which is provided in section 3.5 of [26].182

Notice how this process involves calling the underlying function F (·) while attempting to183

find a good value for α which is a deviation from the standard broyden update which only calls184

the underlying function once per iteration. However, this extra cost comes with the reward185

that the algorithm converges much quicker, converges with less total calls to the underlying186

function, and is less likely to diverge.187

Algorithm 3.1 Broyden Updates

procedure BROYDEN(x0, α, ϵ, f , istype1)
xn← x0
fn← f(xn)
fn norm← ∥fn∥2
an← []
bn← []
while fn norm > ϵ do
jfn← JACOBIAN SOLVE(fn, α, an, bn, istype1)
∆x← −1 ∗ jfn
xn← xn+∆x
∆fn← f(xn)− fn
fn← fn+∆fn
fn norm← ∥fn∥2
jfn new ← JACOBIAN SOLVE(fn, α, an, bn, istype1)
∆jfn← jfn new − jfn
if istype1 then
const← (∆x).T ∗∆jfn
b← ∆x

else
const← (∆fn).T ∗∆fn
b← ∆fn

end if
an.append((∆x−∆jfn)/const)
bn.append(b)

end while
return xn

3.4. Full Algorithm. The full algorithm is implemented in Algorithm 3.1, type 1 and188

type 2 Broyden updates are similar enough that both are implemented in a single algorithm.189

This manuscript is for review purposes only.



8 A. ALABDULKAREEM

Algorithm 3.2 Solving Jacobian, returns J−1 ∗ f
procedure JACOBIAN SOLVE(fn, α, an, bn, istype1)
r ← α ∗ fn
for a, b← an[i], bn[i] do
if istype1 then

v ← r
else

v ← fn
end if
r ← r + a ∗ (b.T ∗ v)

end for
return r

Algorithm 3.2 solves and returns a vector r that fulfills the equation J ∗ r = fn by utilizing190

the fast implementation of the inverse Jacobian shown in Equation (3.4) for type 1 and191

Equation (3.5) for type 2.192

4. Validation.193

4.1. N-Dimensional Linear System. The first validation problem is a set of n linear194

equations parameterized by n slopes and y-intercepts:195

fi(x) = αi ∗ xi + βi(4.1a)196

F (x) = Ax+B(4.1b)197198

Where A ∈ Rn×n is a diagonal matrix with diagonal elements sampled from a uniform199

αi ∈ U(−10, 10) and B ∈ Rn are also elements sampled from a uniform βi ∈ U(−10, 10)200

4.1.1. Results. Just as expected both Newton’s method and Broyden updates converge201

in one or two steps (assuming A is not ill-conditioned).202

The previous example was very trivial and is only meant to show that the algorithm is203

functioning and not behaving wildly. Next we will look at an actual real world application204

involving integrals.205

4.2. Solving a non-linear integral equation. This problem was proposed in [24] and was206

also used as an example problem in [44].207

The goal is to find a solution for the function u(t) where u is a scalar function u : R→ R208

and t ∈ [0, 1] Such that:209

(4.2) G(t) = u(t) +

∫ 1

0
H(s, t)(u(s) + s+ 1)3ds = 0210

where211

This manuscript is for review purposes only.



BROYDEN UPDATES; QUASI-NEWTON METHODS FOR NONLINEAR SYSTEMS OF EQUATIONS 9

Figure 1. Solving u(t) fulfilling Equation (4.2) using different solvers. They all achieve extremely similar
approximate solutions.

(4.3) H(s, t) =

{
s(1− t) s ≤ t

t(1− s) t ≤ s
212

and u(0) = u(1) = 0.213

Notice how the problem above does not fit our paradigm of root-finding. This is because214

the goal of root-finding when applied above is to find a value t that fulfils Equation (4.2).215

However, our goal is to find a function u(·) that is a continuous mapping from [0, 1] to R216

that fulfills Equation (4.2). This goal, as it is, is not achievable using our current root-217

finding algorithms as they are not designed to find continuous functions such as u : [0, 1]→ R.218

However, what we can do is discretize u into n equidistant points at locations t = ti =
i

n+1 = ih219

for i = 1, . . . , n thus we only approximate u at the points ti, which means we can’t evaluate220

the integral except at those points as well.221

To solve this problem we also need to discretize the integral using the same equidistant222

mesh for n−points at the locations s = si = ti =
i

n+1 = ih for i = 1, . . . , n and use a riemann223

sum. Thus, we can finally define F : Rn → Rn to be a function that takes as input an n-224

dimensional vector x which represents the values of u(ti) and outputs an n-dimensional vector225

which is the approximated values of G(ti). Concretely226

This manuscript is for review purposes only.



10 A. ALABDULKAREEM

Comparison of Algorithms in different metrics

Dimension(n) 23 24 25 26 27 28 29

Number of calls to the Function F (·)
Newtons 31 55 103 199 391 775 N/A
Broyden T1 32 38 42 50 48 49 48
Broyden T2 39 39 40 43 43 43 45
Scipy 32 38 42 50 48 49 48

L2 norm of the function evaluated at the output F (xout)

Newtons 1.4e-11 1.9e-11 2.6e-11 3.7e-11 5.2e-11 7.3e-11 N/A
Broyden T1 1.8e-6 1.1e-6 1.7e-6 2.5e-7 3.1e-7 2.0e-7 1.2e-7
Broyden T2 1.1e-6 6.0e-6 2.9e-6 2.3e-7 1.7e-7 2.2e-6 4.0e-7
Scipy 1.8e-6 1.1e-6 1.7e-6 2.5e-7 3.1e-7 2.0e-7 1.2e-7

CPU clock time in seconds

Newtons 0.04 0.25 2 14 123 1001 N/A
Broyden T1 0.04 0.18 0.75 3 17 71 348
Broyden T2 0.05 0.18 0.70 3 15 70 324
Scipy 0.04 0.18 0.75 3.9 17 77 336

Table 1
Comparison of results for different algorithms. N/A means the algorithm was terminated due to an execu-

tion time exceeding 1 hour.

(4.4) F (x) =


F1(x)
F2(x)

...
Fn(x)

 , x =


x1
x2
...
xn

 =


ũ(t1)
ũ(t2)
...

ũ(tn)

 =


ũ(h)
ũ(2h)

...
ũ(nh)

 , h =
1

n+ 1
227

Where ũ(·) is an approximate estimate of u(·) on the mesh points, and Fi is the value228

of G(ti) evaluated on the mesh points using ũ and using an integral approximation, Fi =229

G̃(ti; ũ) = G̃(ih;x). Concretely230

Fi(x) = xi + h ∗ (
i∑

j=1

tj(1− ti)(xj + tj + 1)3(4.5a)231

+

n∑
j=i+1

ti(1− tj)(xj + tj + 1)3)(4.5b)232

233

(note that u(0) = u(1) = 0 which is why the summation skips the endpoints 0 and n+1)234

Thus we have framed the problem of finding a problem u(·) that fulfils G(t) = 0 for235

t ∈ [0, 1] as a root-finding problem where we require finding roots of F (F (x) = 0), that gives236

n-point approximations ũ(t) ≈ u(t) where higher values of n gives better approximations of u.237

This manuscript is for review purposes only.



BROYDEN UPDATES; QUASI-NEWTON METHODS FOR NONLINEAR SYSTEMS OF EQUATIONS 11

4.2.1. Results. We compare the results of Broyden Updates (both Type 1 and Type 2)238

with the results of using Newton’s method as well as an implementation of Broyden Updates239

provided by Scipy [38].240

We can see the solutions of the four different methods for n = 28 in Figure 1 and all241

output solutions are extremely similar.242

In Table 1 we compare the four algorithms when run on 7 different scales of the problem243

n = 8, 16, 32, 64, 128, 256, 512, 1024 and we compare 3 metrics which are the number of calls to244

the function F , the L2 norm of solution and the CPU clock time. We terminate the simulation245

when an algorithm takes more than an hour to terminate which is why some experiments have246

”N/A” in them.247

Here we notice the major difference between Newton’s method and Broyden’s. The num-248

ber of calls to the underlying function seems to barely grow for Broydens method while for249

Newton’s method it grows linearly with the number of dimensions n. Which is why when250

we reached n = 29, while Broyden’s algorithm called the function less than 50 times, New-251

ton’s was terminated forcefully after taking more than an hour and has called the underlying252

function more than 3000 times yet still has not converged.253

From these experiments we make the suggestion that when considering solving a root-254

finding problem, we recommend scaling down the problem and using Newton’s method. If255

newton’s method successfully find a solution for the scaled down problem then slightly increase256

the number of dimensions until you reach the desired number of dimensions. However, if257

newton’s method starts to take an extremely long time to converge before reaching the desired258

number of iterations then that is where Broyden Updates shine and show their advantage.259

Figure 2. Solving u(x, y) fulfilling Equation (4.6) using different solvers for n = 502. They all achieve
extremely similar approximate solutions. Type 2 Broyden updates are not shown as the algorithm did not
converge.

4.3. A variant of Bratu’s problem. This problems comes from [8] where we attempt to260

solve the partial differential equation261

(4.6) uxx + uyy + ux + eu = 0262

This manuscript is for review purposes only.



12 A. ALABDULKAREEM

Comparison of Algorithms in different metrics

Dimension(n) 402 502 602 702 802 902 1002

Number of calls to the Function F (·)
Newtons 3205 5005 7205 9805 12805 16205 20005
Broyden T1 858 1054 1278 1578 2000 2552 3243
Broyden T2 N/A N/A N/A N/A N/A N/A N/A
Scipy 860 1054 1276 1578 1998 2552 3232

L2 norm of the function evaluated at the output F (xout)

Newtons 1.4e-7 1.8e-7 2.1e-7 2.5e-7 2.8e-7 3.2e-7 3.6e-7
Broyden T1 6.0e-6 6.0e-6 6.0e-6 6.0e-6 6.0e-6 6.0e-6 6.0e-6
Broyden T2 N/A N/A N/A N/A N/A N/A N/A
Scipy 5.9e-6 5.9e-6 6.0e-6 6.0e-6 6.0e-6 6.0e-6 6.0e-6

CPU clock time in seconds

Newtons 5.4 18 41 113 211 530 812
Broyden T1 1.2 2.4 4.5 18 38 352 564
Broyden T2 N/A N/A N/A N/A N/A N/A N/A
Scipy 0.8 1.9 3.9 10 19 57 78

Table 2
Comparison of results for different algorithms. N/A means the algorithm was terminated due to an execu-

tion time exceeding 20 minutes or diverging.

Where u : [0, 1]2 → R2 and equal to 0 on the boundaries u(0, y) = u(1, y) = u(x, 0) =263

u(x, 1) = 0264

This function is a variant of Bratu’s problem [23] with the difference being the ux term265

which breaks the standard symmetry of Bratu’s problem.266

To convert this to a root-finding problem, we use a standard second-order finite difference267

approximation with an n× n grid to approximate Equation (4.6).268

4.3.1. Results. We compare the results of Broyden Updates (both Type 1 and Type 2)269

with the results of using Newton’s method as well as an implementation of Broyden Updates270

provided by Scipy [38]. To be exact, the implementation provided by Scipy is type 1 broyden271

updates which is an important difference for this problem.272

We can see the solutions of the four different methods for n = 502 in Figure 2 and all273

output solutions are extremely similar. The output for Type 2 is not shown as the algorithm274

did not converge.275

The first thing we notice is that type 2 broyden updates always diverge which is a sig-276

nificant change from Table 2 where the two types were not significantly different in that277

experiment. We have tried experimenting different values of alpha as discussed in Subsec-278

tion 3.1 but we could never get the algorithm to converge. To verify that this is not a mistake279

in our implementation, we have attempted to run the experiments using a Type 2 broyden280

updates implemented by Scipy (not shown in Table 2) and it has also failed to converge.281

In terms of calls to the underlying function, we notice the same pattern as usual where282

Newtons method needs significantly more calls as we increase the dimensionality of the prob-283

This manuscript is for review purposes only.



BROYDEN UPDATES; QUASI-NEWTON METHODS FOR NONLINEAR SYSTEMS OF EQUATIONS 13

lem while Broyden updates increase at a more reasonable pace and this is the major improve-284

ment provided by Broyden updates over Newtons method.285

In terms of CPU clock time we notice a similar pattern where Newtons method is slower.286

However, in this problem we notice that Scipy’s implementation of the algorithm is an order of287

magnitude faster than our implementation (despite calling the underlying function the same288

number of times). Further investigation on the major difference in timing revealed that scipy289

uses an optimized dot product implementation to calculate the same value we calculate in290

Algorithm 3.2 and this difference in implementation only shows significantly once the number291

of iterations of Broyden updates is high enough which is why Table 1 does not show a major292

difference in execution speed.293

5. Broyden Updates Real World Applications. Broyden Updates are used in many dif-294

ferent areas of science. Below we briefly go over several examples of it’s uses.295

An example is calculations in quantum chemistry electron-structures where broyden Up-296

dates are used to solve nonlinear equations such as the nuclear coupled-cluster theory and297

other equations in quantum chemistry [1]. Another example is in power system problems such298

as reactive power planning [18] or in distribution systems [40]. Another area is the analysis299

of vertical boiling channel which is of concern to the the safety of nuclear power reactors [21].300

It’s also used for image deblurring techniques [16], in radiation transfer problems in Astro-301

physics [25], in determining pressure distribution in gas pipeline networks [33], in nonlinear302

eigenproblems [13], in the analysis of in-compressible fluid flow in fluid mechanics [7], and in303

so many other areas of science.304

For more examples of uses of Broyden Updates, Pérez and Lopes persent a survey of recent305

applications [29].306

6. Variants of Broyden Updates. Many different variants of Broyden Updates have been307

developed. Many variants focus on a more memory-efficient implementations such as the308

Broyden rank reduction method [37], the autoadaptative limited memory method [44], and309

many others [36, 30, 17, 10].310

Other works focus on developing variants of Broyden Updates that decrease the number311

of iterations and making the algorithm converge faster mostly by using some form of a hybrid312

model [28, 27, 4, 22, 20].313

Some other works focus on modifying the algorithm to handle special conditions such314

as handling linear constraints using the Lagrange-multiplier technique [32], or extending the315

algorithm to a non-archimedean framework with the added difficulty of no inner products [6],316

or guaranteeing the positive definiteness and symmetrical property for the Hessian [19].317

Appendix A. My Contribution to Scipy’s Implementation of Broyden Updates. During318

the process of implementing and refining my implementation of Broyden’s algorithm, I was319

trying to optimize the execution speed of my algorithm as much as possible to make it compa-320

rable with production level implementations of the algorithm. Interestingly, while looking at321

the source code for the implementation of Broyden’s algorithm in Scipy (The defacto python322

scientific computing library) to see what sort of tricks they utilized for efficiency, I discovered323

that in every iteration of both types of Broyden updates, they make an extra unnecessary call324

to matvec. Which made my implementation actually slightly faster in certain experiments.325

This manuscript is for review purposes only.



14 A. ALABDULKAREEM

After discovering this, I made an attempt to fix the tiny piece of un-optimized code and326

submitted it to the official Scipy team (pull #16099). As of May 3rd, all the tests have passed327

and my contribution was officially added to the Scipy master branch.328

REFERENCES329

[1] A. Baran, A. Bulgac, M. M. Forbes, G. Hagen, W. Nazarewicz, N. Schunck, and M. V.330
Stoitsov, Broyden’s method in nuclear structure calculations, Physical Review C, 78 (2008),331
p. 014318.332

[2] M. S. Bartlett, An inverse matrix adjustment arising in discriminant analysis, The Annals of Mathe-333
matical Statistics, 22 (1951), pp. 107–111.334

[3] N. Bićanić and K. H. Johnson, Who was ‘–raphson’?, International Journal for Numerical335
Methods in Engineering, 14 (1979), pp. 148–152, https://doi.org/https://doi.org/10.1002/nme.336
1620140112, https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620140112, https://arxiv.org/337
abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620140112.338

[4] M. Bonković, A. Hace, and M. Cecić, Modified broyden method for noise visual servoing, in Proc. Of339
EUROSIM, 2007.340

[5] C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Mathematics of com-341
putation, 19 (1965), pp. 577–593.342

[6] X. Dahan and T. Vaccon, On a non-archimedean broyden method, in Proceedings of the 45th Interna-343
tional Symposium on Symbolic and Algebraic Computation, 2020, pp. 114–121.344

[7] M. Engelman, G. Strang, and K.-J. Bathe, The application of quasi-newton methods in fluid me-345
chanics, International Journal for Numerical Methods in Engineering, 17 (1981), pp. 707–718.346

[8] H.-r. Fang and Y. Saad, Two classes of multisecant methods for nonlinear acceleration, Numerical347
linear algebra with applications, 16 (2009), pp. 197–221.348

[9] G. H. Golub and C. F. Van Loan, Matrix computations. johns hopkins studies in the mathematical349
sciences, 1989.350

[10] R. Haelterman, I. Lahouli, M. Shimoni, and J. Degroote, Limited memory switched broyden351
method for faster image deblurring, in 2017 Fifteenth IAPR International Conference on Machine352
Vision Applications (MVA), IEEE, 2017, pp. 366–369.353

[11] W. Heitzinger, I. Troch, and G. Valentin, Praxis nichtlinearer Gleichungen: mit zahlreichen An-354
wendungsbeispielen für Ingenieure, Mathematiker und Naturwissenschaftler, Hanser, 1985.355

[12] A. S. Householder, The numerical treatment of a single nonlinear equation, McGraw-Hill, 1970.356
[13] E. Jarlebring, Broyden’s method for nonlinear eigenproblems, SIAM Journal on Scientific Computing,357

41 (2019), pp. A989–A1012.358
[14] M. Kawata, C. Cortis, and R. Friesner, Efficient recursive implementation of the modified broy-359

den method and the direct inversion in the iterative subspace method: Acceleration of self-consistent360
calculations, The Journal of chemical physics, 108 (1998), pp. 4426–4438.361

[15] E. Kvaalen, A faster broyden method, BIT Numerical Mathematics, 31 (1991), pp. 369–372.362
[16] I. Lahouli, R. Haelterman, J. Degroote, M. Shimoni, G. De Cubber, and R. Attia, Accelerating363

existing non-blind image deblurring techniques through a strap-on limited-memory switched broyden364
method, IEICE TRANSACTIONS on Information and Systems, 101 (2018), pp. 1288–1295.365

[17] I. Lahouli, R. Haelterman, J. Degroote, M. Shimoni, G. De Cubber, and R. Attia, Accelerating366
existing non-blind image deblurring techniques through a strap-on limited-memory switched broyden367
method, IEICE TRANSACTIONS on Information and Systems, 101 (2018), pp. 1288–1295.368

[18] L. L. Lai and J. Ma, Application of evolutionary programming to reactive power planning-comparison369
with nonlinear programming approach, IEEE Transactions on power systems, 12 (1997), pp. 198–206.370

[19] S. S. Mahmood and N. S. Muhanah, Symmetric and positive definite broyden update for unconstrained371
optimization, Baghdad Science Journal, 16 (2019).372

[20] M. Mamat, I. Mohd, and L. W. June, Hybrid broyden method for unconstrained optimization, (2009).373
[21] M. Mirzaee, A. Zolfaghari, A. Minuchehr, and M. Aghaie, A drift-flux analysis of the diversely374

heated channel using the broyden method, Applied Thermal Engineering, 150 (2019), pp. 464–481.375

This manuscript is for review purposes only.

https://doi.org/https://doi.org/10.1002/nme.1620140112
https://doi.org/https://doi.org/10.1002/nme.1620140112
https://doi.org/https://doi.org/10.1002/nme.1620140112
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620140112
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620140112
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620140112
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620140112


BROYDEN UPDATES; QUASI-NEWTON METHODS FOR NONLINEAR SYSTEMS OF EQUATIONS 15

[22] H. Mohammad and M. Y. Waziri, On broyden-like update via some quadratures for solving nonlinear376
systems of equations, Turkish Journal of Mathematics, 39 (2015), pp. 335–345.377

[23] A. Mohsen, A simple solution of the bratu problem, Computers & Mathematics with Applications, 67378
(2014), pp. 26–33.379

[24] J. J. Moré and M. Y. Cosnard, Numerical solution of nonlinear equations, ACM Transactions on380
Mathematical Software (TOMS), 5 (1979), pp. 64–85.381

[25] S. Nicolas, L. Bigarré, and F. Paletou, Broyden’s method for the solution of the multilevel non-lte382
radiation transfer problem, Astronomy & Astrophysics, 527 (2011), p. A1.383

[26] J. Nocedal and S. J. Wright, Numerical optimization, Springer, 1999.384
[27] I. Osinuga and S. Yusuff, Construction of a broyden-like method for nonlinear systems of equations,385

Annals. Computer Science Series, 15 (2017), pp. 128–135.386
[28] I. A. Osinuga and S. O. Yusuff, Quadrature based broyden-like method for systems of nonlinear equa-387

tions, Statistics, Optimization & Information Computing, 6 (2018), pp. 130–138.388
[29] R. Pérez and V. L. R. Lopes, Recent applications and numerical implementation of quasi-newton389

methods for solving nonlinear systems of equations, Numerical Algorithms, 35 (2004), pp. 261–285.390
[30] M. B. Reed, L-broyden methods: a generalization of the l-bfgs method to the limited-memory broyden391

family, International Journal of Computer Mathematics, 86 (2009), pp. 606–615.392
[31] W. C. Rheinboldt, Methods for solving systems of nonlinear equations, SIAM, 1998.393
[32] A. Rodŕıguez-Ferran and A. Huerta, Adapting broyden method to handle linear constraints imposed394

via lagrange multipliers, International Journal for Numerical Methods in Engineering, 46 (1999),395
pp. 2011–2026.396

[33] K. A. Sidarto, A. Kania, L. Mucharam, R. A. Widhymarmanto, et al., Determination of gas397
pressure distribution in a pipeline network using the broyden method., Journal of Engineering &398
Technological Sciences, 49 (2017).399

[34] G. W. Stewart, Introduction to matrix computations, Elsevier, 1973.400
[35] J. F. Traub, Iterative methods for the solution of equations, vol. 312, American Mathematical Soc., 1964.401
[36] B. van de Rotten and S. V. Lunel, A limited memory broyden method to solve high-dimensional402

systems of nonlinear equations, in EQUADIFF 2003, World Scientific, 2005, pp. 196–201.403
[37] B. van de Rotten and S. V. Lunel, A memory-efficient broyden method to compute fixed points of404

non-linear maps arising in periodically forced processes, IMA Journal of Applied Mathematics, 80405
(2015), pp. 585–607.406

[38] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,407
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,408
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Lar-409
son, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perk-410
told, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.411
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, SciPy 1.0: Fun-412
damental Algorithms for Scientific Computing in Python, Nature Methods, 17 (2020), pp. 261–272,413
https://doi.org/10.1038/s41592-019-0686-2.414

[39] T. Yamamoto, Historical developments in convergence analysis for newton’s and415
newton-like methods, Journal of Computational and Applied Mathematics, 124416
(2000), pp. 1–23, ”https://reader.elsevier.com/reader/sd/pii/S0377042700004179?token=417
3D8949FFB231E2EEA27B25336E535706C5B60E294C4110C14072E7BE7139B388BBC00EBE078245BD948C65AEB16ABDAB&418
originRegion=us-east-1&originCreation=20220501192826”.419

[40] H. Yang, F. Wen, and L. Wang, Newton-raphson on power flow algorithm and broyden method in420
the distribution system, in 2008 IEEE 2nd International Power and Energy Conference, IEEE, 2008,421
pp. 1613–1618.422

[41] D. M. Young, Iterative solution of large linear systems, Elsevier, 1971.423
[42] T. J. Ypma, Historical development of the newton–raphson method, SIAM review, 37 (1995), pp. 531–551.424
[43] F. J. Zeleznik, Quasi-newton methods for nonlinear equations, Journal of the ACM (JACM), 15 (1968),425

pp. 265–271.426
[44] M. Ziani and F. Guyomarc’h, An autoadaptative limited memory broyden’s method to solve systems of427

nonlinear equations, Applied mathematics and computation, 205 (2008), pp. 202–211.428

This manuscript is for review purposes only.

https://doi.org/10.1038/s41592-019-0686-2
"https://reader.elsevier.com/reader/sd/pii/S0377042700004179?token=3D8949FFB231E2EEA27B25336E535706C5B60E294C4110C14072E7BE7139B388BBC00EBE078245BD948C65AEB16ABDAB&originRegion=us-east-1&originCreation=20220501192826"
"https://reader.elsevier.com/reader/sd/pii/S0377042700004179?token=3D8949FFB231E2EEA27B25336E535706C5B60E294C4110C14072E7BE7139B388BBC00EBE078245BD948C65AEB16ABDAB&originRegion=us-east-1&originCreation=20220501192826"
"https://reader.elsevier.com/reader/sd/pii/S0377042700004179?token=3D8949FFB231E2EEA27B25336E535706C5B60E294C4110C14072E7BE7139B388BBC00EBE078245BD948C65AEB16ABDAB&originRegion=us-east-1&originCreation=20220501192826"
"https://reader.elsevier.com/reader/sd/pii/S0377042700004179?token=3D8949FFB231E2EEA27B25336E535706C5B60E294C4110C14072E7BE7139B388BBC00EBE078245BD948C65AEB16ABDAB&originRegion=us-east-1&originCreation=20220501192826"
"https://reader.elsevier.com/reader/sd/pii/S0377042700004179?token=3D8949FFB231E2EEA27B25336E535706C5B60E294C4110C14072E7BE7139B388BBC00EBE078245BD948C65AEB16ABDAB&originRegion=us-east-1&originCreation=20220501192826"

	Introduction
	The root-finding problem
	Newton's Method
	Computational Complexity of Newton's Method
	Quasi-Newton methods

	Brief Derivation of Broyden Updates
	Broyden Updates Type 2

	Algorithm
	Initial Jacobian Estimate
	Convergence Condition
	Line Search Update
	Full Algorithm

	Validation
	N-Dimensional Linear System
	Results

	Solving a non-linear integral equation
	Results

	A variant of Bratu’s problem
	Results


	Broyden Updates Real World Applications
	Variants of Broyden Updates
	Appendix A. My Contribution to Scipy's Implementation of Broyden Updates

