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Abstract

The Hessian of the Loss in Deep Learning is a topic of great interest recently. In
this work, we derive an efficient analytical computation of both the maximum
eigenvalue and the trace of the Hessian of the Loss in addition to an analytical
and empirical convergence rate of the algorithm. The algorithm is efficiently
implemented using nothing but commonly used Machine Learning techniques: the
forward pass and backpropagation. We then extensively train over 150 models
spanning over 10 thousand epochs with different hyperparameters and optimizers
and run our algorithm after each epoch to empirically calculate properties of the
hessian during training. We provide empirical results for the relationship between
generalizability and the hessian, in addition to several other observations that arised
from this data.

1 Introduction

The loss landscape and the Hessian of the Loss in Deep Learning is an ever growing area of research.
While the field is dominated by gradient based methods, second-order derivatives provide extra
insight into the landscape. This extra insight can possibly extrapolate into generalizability claims and
other details about the models performance.

Calculating the second-order derivative of the loss (Hessian) is an intractable computation for any
deep learning model of interest, however, the eigenvalues of the Hessian are potentially computable
in a reasonable manner using numerical methods. In this work, we derive an efficient algorithm
to calculate the maximum eigenvalue and the trace of the Hessian. Many recent works studied the
relationship between the Hessian and different important factors of the model.

Jastrzębski et al. [2018] studied the correlation between the width of the hessian of the minima found
at the end of training in relation to the learning rate and batch-size ratio. Thus, finding the empirically
optimal combination of these hyperparameters. In later works, Jastrzębski et al. [2019] studied the
loss landscape by analyzing the search direction of SGD during training in relation to the hessian,
specifically the sharpness of the curvature of the training loss along with the step size and batch size.
They suggest that such analysis of the behavior of optimizers is critical for a deeper understanding
of generalization in training. They concluded that the steps taken by SGD correlate well with the
direction of the sharpest curvature of the loss and that the SGD steps along this direction only up to a
certain point when reaching the maximum sharpness.

Other works such as Sagun et al. [2016] looked at the hessian of the loss function at the end of training
and noted several observations, such as the singularity of the hessian and adding more parameters
to the model only makes the hessian more singular. They also note that the spectrum at the end of
training comprises two phases, a cluster around zero that depends on the number of parameters in the
model and a cluster separated away that depends on the data. One key note is that this work only
considers models that are comprised of MLPs with two hidden layers trained on only 1000 MNIST
images. Chaudhari et al. [2019] reported the same clustering relationship.

While not explicitly studying the hessian, Wen et al. [2018] study the generalizability of DNNs by
increasing the smoothness of the loss, which can be linked with our work of analyzing the dynamics of
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the hessian while learning. Similarly, Wang et al. [2018] theoretically shows the relationship between
a model’s generalization and the smoothness of the hessian (specifically, its Lipschitz constant) using
a PAC-Bayes framework. Directly optimizing for loss flatness has been shown to empirically improve
generalization by utilizing methods such as Sharpness-Aware Minimization (SAM) Foret et al. [2021].
Many other works Chaudhari et al. [2019], Keskar et al. [2017] similarly show that empirically,
sharper minima correlate with poor generalizability.

While the previously mentioned works all tend to point towards the same direction, other works
seem to call into question the causal relationship between properties of the hessian and the model’s
generalizability. Further literature review of this counterargument is provided in Appendix 7.8.

In the next section, we provide an analytical derivation for our algorithm (full pseudocode in appendix
7.1) as well as the convergence rates.

2 Derivation

In this section we describe our derivations for calculating the maximum eigenvalue and trace of the
Hessian of the training loss with respect to the neural network parameters.

For some training data X ∈ Rn×d and Y ∈ Rn, and some network parameters θ ∈ Rp, the Hessian
of the Loss function L(X,Y ; θ) is H(L, θ) = ∂2L(X,Y ;θ)

∂θ2 which is a Rp×p matrix. Calculating the
exact hessian naively requires p2/2 evaluations (the 1

2 term due to it’s symmetric property) where

each evaluation is of the form ∂2L(X,Y ;θ)
θiθj

this calculation quickly becomes intractable for any neural
network size of interest (large p). Thus, the calculation of the full hessian matrix is computationally
infeasible and numerical techniques must be employed.

Many techniques exist to calculate the eigenvalues and trace of the hessian. Ours is an algorithm
which efficiently computes both the trace and the maximum eigenvalue of a neural network by
efficiently utilizing automatic differentiation (Backpropagation) provided by popular machine learning
frameworks such as PyTorch Paszke et al. [2019]. Some of our algorithms computation is based on
Sankar et al. [2021].

Below we describe the analytical derivation of our technique for both calculations of the trace and
maximum eigenvalue, then we describe the algorithm to calculate them efficiently using automatic
differentiation.

2.1 Derivation of Trace Calculation

Let v ∈ Rn be a random vector where each element is an independent standard gaussian vi ∼ N (0, 1)
for i ∈ {1, · · · , n}, then the trace of the hessian is equal to

Trace(H(L, θ)) = E
[
vT

∂

∂θ
f(X,Y, θ, v)

]
(1)

where f is a scalar function defined as

f(X,Y, θ, v) = vT
∂L(X,Y ; θ)

∂θ
(2)

Proof and further discussion about the significance and efficiency of this implementation in the
Appendix 7.2.

Let itr be the number of random Gaussian vectors vi we sample and Backpropagate through until
we consider the trace to be well approximated. We derive a theoretical lower-bound on itr to
guarantee that our empirical approximation of the trace is within ϵ% of the actual trace (or ±ϵabs)
with probability 1− δ

itr ≥
σ[X]√

δ ∗max {ϵ ∗ |µ|, ϵabs}
(3)

Proof and further discussion in Appendix 7.3
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2.2 Derivation of Maximum Eigenvalue Calculation

Let v0 ∈ Rn be a random gaussian vector, we follow the recurrent relation

vi+1 =
∂

∂θ
f(X,Y, θ, vi) (4)

Where f(·) is defined in (2). Then, the maximum eigenvalue of the hessian is equal to

maxeig (H(L, θ)) = lim
i→∞

vTi vi+1 (5)

With a rate of convergence of
∣∣∣λ1(H(L,θ))
λ2(H(L,θ))

∣∣∣ where 1(·) is the maximum eigenvalue and 2(·) is the
second largest eigenvalue.

Proof and further discussion in Appendix 7.4

3 Algorithm

We combine our results into an efficient algorithm (In Appendix 7.1). We ran this algorithm on a
consumer grade machine with a GTX 1060 and were able to estimate both the trace and maximum
eigenvalue for a 1 million parameter CNN in 30 seconds.

4 Emperical Results

For all our experiments we use CIFAR 10 for our dataset and a CNN model composed of two
convolution layers with 32 channels each followed by a two hidden layer NN and ReLU as the
activation function.

Aggregating all our experimental data spanning over 10 thousands epochs and 150 models with
different hyperparameters and optimizers, we provide two new insights regarding the trace and
maximum eigenvalue throughout training (a third insight mentioned in Appendix 7.7 for space
limitations.).

4.1 Hyperparameters are fundementally different explorers

Conjecture 1 The behaviour of the loss landscape exploration during SGD is fundamentally different
for different hyperparameters, even at the early stages of training.

Our first insight is that, despite having similar training loss and the validation accuracy throughout
training, the trace and maximum eigenvalue are fundamentally different when varying hyperparame-
ters such as the learning rate and batch size. This is true throughout all of training and not just as the
end stages of learning.

At a first glance, the prevalent idea that regarding differences in the learning rate is that a smaller
rate merely causes the optimization to move slower through the loss landscape allowing for more
fine-tuning but causing slower convergence and the possibility of overfitting. However, we find that
throughout all our experiments, the difference in the eigenvalues of the hessian are stark even in the
very early stages of training.

Figure 1 shows the 8 models trained with different learning rates (0.01 and 0.05) as well as 4 models
trained with different batch sizes (32 and 64). We can see that despite the training loss and validation
curves being relatively close to each other (despite one group of models sometimes requiring more
epochs to catch up to the other), the two groups have distinctively different maximum eigenvalues
from as early as the first epoch of training. We decided to train multiple models with the same
hyperparameters (included in the figures) to make sure such drastic differences were not merely due
to different weight initializations.

While the idea that different hyperparameters cause different eigenvalues at the end of training is not
new Kaur et al. [2022], Sankar et al. [2021], what is significant about our results is that this difference
is achieved in the very early stages of training well before the weights are near convergence.
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Figure 1: Top: 4 models trained with a learning rate of 0.05 (in red) and 4 models with a learning rate
of 0.01 (in blue). Bottom: 2 models trained with a batch size of 32 (in red) and 2 models with a batch
size of 64 (in blue). All curves are a running average with a window size of 5 epochs with error bars
showing the running standard deviation

4.2 Hessian properties and Domain Shift

Conjecture 2 The dynamics of the Hessian’s maximum eigenvalue give extra knowledge of how
well the model performs under distribution shift.

We observe that the maximum eigenvalue gives us extra knowledge on the models out of distribution
(OOD) performance. We simulate a distribution shift on our dataset by adding Gaussian noise
after the typical normalization step in our processing pipeline (visualization of the OOD images in
appendix 7.5).

We select 1500 epochs from our experiment results and analyze the dynamics of the test accuracy
(for both in/out of distribution) as a relationship with the maximum eigenvalue. We use ordinary least
squares regression analysis to analyze this dataset.

In table 1 we show the results of running four OLS Regression Models. First we focus on the models
that use only the maximum eigenvalue as independent variable (first and third columns). We note that
the results show the maximum eigenvalue is statistically significant in predicting the test accuracy for
both in and out of distribution datasets. This is typical and what we would expect as the maximum
eigenvalue is a good indicator of training which means it is typical that it would correlate with Test
Accuracy.

However, to accurately analyze whether the maximum eigenvalue is a good indicator of test accuracy,
we build two additional models that take into considation the validation accuracy (second and fourth
columns). The In-Distribution model (second column) shows us that when we add the validation
accuracy as an independent variable in the model, the maximum eigenvalue is no longer statistically
significant (p>0.05). This is expected as both the validation and test accuracy come from the exact
same distribution, thus no extra knowledge can be attained from the eigenvalues as the validation
accuracy is an unbiased estimator.

The significance of the results is from the model that predicts the Out of Distribution Test Accuracy
(fourth column) that shows that when analyzing the OOD Test accuracy, the In-Distribution validation
accuracy no longer provides all the info we need and that the maximum eigenvalue is a statistically
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significant variable in the prediction (p<0.01). This is consistent with the intuition that as the
maximum eigenvalue decreases, the loss landscape is flatter on the current point which means that
for the same validation accuracy, the OOD Test Accuracy increases. In other words, the relationship
indicates that flatter minima should be more robust for perturbations of the dataset (OOD).

Table 1: OLS Regression Results on the change of Test Accuracy for In/Out of distribution test set

In-Distribution Test Accuracy OOD Test Accuracy

only maxeig maxeig+val acc only maxeig maxeig+val acc

∆λmax -0.05∗∗∗ -0.0017† -0.083∗∗∗ -0.0453∗∗∗

(0.004) (0.001) (0.006) (0.005)

∆validation acc% 0.9737∗∗∗ 0.7277∗∗∗
(0.006) (0.033)

constant 0.82∗∗∗ 0.0149∗∗ 0.6719∗∗∗ 0.0694†
(0.063) (0.014) (0.091) (0.084)

F-test 172∗∗∗ 17,410∗∗∗ 206∗∗∗ 383∗∗∗

AIC 6732 2181 7841 7419
N 1470 1470 1470 1470
Note: ∗∗ p < 0.05 ; ∗∗∗ p < 0.01 ; † p > 0.05(not significant)

5 Limitations of our work

One limitation of our work is that all our experiments were run on two types of models (CNNs and
MLPs). Further work might be to reproduce these results with more diverse and larger models such as
Transformers and RNNs. Another limiation of our work is our limited dataset selection (CIFAR10).
Dataset diversity in this type of analysis has a great amount of room for improvement as the Hessian’s
relationship greatly depends on the dataset used, as pointed out in Sagun et al. [2016].

The dataset and models in our experiments were fairly limited due to the fact that we are running all
experiments on a consumer grade laptop not designed for deep learning, we fully trained hundreds
of models and partially trained thousands in a relatively short time span. This is positive evidence
for our efficiency claim as our algorithm was efficient enough to achieve such results with very little
compute, thus our methods can scale to orders of magnitude larger datasets and models given the
amount of compute and resources that production-ready deep learning architectures provide.

6 Conclusion

Potential future work developing on our described results could be regarding conjecture 1, analyzing
the theoretical reason for why the hyperparameters affect the eigenvalues early in the training
phase which could lead to better understanding of current optimizers as the phenomena mentioned
in conjecture 1 existed even when tweaking optimizer specific hyperparameters. Future work
on conjecture 2 could produce optimizations that are more robust to out of distribution data and
distribution shifts.

The dynamics of the hessian of the loss during training remains an open and interesting area of
research. In this work, we provided an efficient algorithm to calculate both the maximum eigenvalue
and the trace of the hessian using efficient techniques such as backpropagation. Then we analyzed the
dynamics of the trace and maximum eigenvalue during training and posed several analysis regarding
the relationship of the hyperparameters with the loss landscape and the relationship between the
eigenvalues and the Out of Distribution generalizability of the models. We believe that these insights
can further build into a larger narrative that can guides our understanding of deep learning models.
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Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio,
and Amos Storkey. Three Factors Influencing Minima in SGD, September 2018. URL http:
//arxiv.org/abs/1711.04623. arXiv:1711.04623 [cs, stat].
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7 Appendix

7.1 Full Algorithm

In Algorithm 1 we provide the full algorithm from our derived calculations. The significance of our
algorithm is that it fully utilizes Backpropagation in its calculation and doesn’t require any additional
optimizers or numerical methods.

Algorithm 1 Efficient computation of the Trace and Maximum Eigenvalue of the Hessian

1: procedure LOSSGRADIENT(L, X, Y, θ, frac) ▷ Returns ∂L(X,Y ;θ)
∂θ on fraction of data

2: size← frac * len(X)
3: ind← random.sample(len(X), size, seed=42) ▷ randomly pick subset
4: Xfrac ← X[ind]
5: Yfrac ← Y [ind]
6: loss← L(Xfrac, Yfrac, θ)
7: return Jacobian(loss, θ) ▷ Apply Backpropagation

8: procedure DFDθ(L, X, Y, θ, frac, v) ▷ Returns ∂f
∂θ as defined (11)

9: grad← LossGradient(L, X, Y, θ, frac)
10: f← vT ∗ grad ▷ Dot-product between the gradient of the Loss and v
11: return Jacobian(f, θ) ▷ Apply Backpropagation

12: procedure TRACE(L, X, Y, θ, rtr, itr) ▷ Returns the approximate of the Trace (10)
13: dim← len(θ)
14: running← [ ]
15: for i = 1 to itr do
16: v ∼ N (0, 1, dim)
17: dfdt← DFDθ(L, X, Y, θ, rtr, v)
18: tr← vT ∗ dfdt ▷ vTAv in (7)
19: running.append(tr)
20: return mean( running ) ▷ Takes the expectation over v in vTAv

21: procedure MAXEIG(L, X, Y, θ, reig, ieig) ▷ Returns the approximate of the Maximum
eigenvalue (10)

22: dim← len(θ)
23: best_approx← 0
24: v ∼ N (0, 1, dim)
25: for i = 1 to ieig do
26: v ← v/norm(v) ▷ Normalize, L2 norm
27: dfdt← DFDθ(L, X, Y, θ, reig, v)
28: best_approx← vT ∗ dfdt
29: v← dfdt ▷ calculate Rayleigh Quotient from (18)
30: return best_approx

7.2 Trace derivation

Many techniques exist to calculate the eigenvalues and trace of the hessian. Keskar et al. [2017]
analyze the magnitude of eigenvalues of the Hessian, which they refer to as the sharpness of a
minimizer, by considering p vectors (p = 100) which define a manifold that then creates an ϵ box
around the function f which they then maximize the function within. Once this stochastic procedure
is complete, a final transformation on the obtained maximum gives the sharpness of f . Such a
maximization problem requires the use of L-BFGS to solve Byrd et al. [1995].
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Our technique, which is a modified algorithm from Sankar et al. [2021], efficiently computes both the
trace and the maximum eigenvalue of a neural network by efficiently utilizing automatic differentiation
(Backpropagation).

We start with an important numerical result that approximates the trace of a matrix by a series of
Matrix-Vector multiplications. Let A ∈ Rn×n be a real symmetric matrix we want to approximate
the trace of, and let v ∈ Rn be a random vector where each element is an independent standard
gaussian vi ∼ N (0, 1) for i ∈ {1, · · · , n} such that

E[v] = 0 E[vvT ] = I (6)

Then we have that

E[vTAv] = E[
n∑

i=1

λi] = Trace(A) (7)

Which is proven by Lin et al. [2016].

In our case the matrix A is the hessian which is represented as the second derivative of a scalar
A = H(L, θ) = ∂2L(X,Y ;θ)

∂θ2 thus we can rewrite the expectation as the following term

Trace(H(L, θ)) = E
[
vT

∂2L(X,Y ; θ)

∂θ2
v

]
(8)

The above equation is still intractable due to the hessian calculation in the middle, however, we can
use a simple property from Matrix Calculus that states that ∂a(x)

∂x b = ∂bT a(x)
∂x where a(x) is a vector

that depends on the vector x, and b is a vector not dependant on x. Using this property on (7) we get

Trace(H(L, θ)) =E
[
vT

∂2L(X,Y ; θ)

∂θ2
v

]
= E

[
vT

(
∂

∂θ

∂L(X,Y ; θ)

∂θ

)
v

]
(9)

=E
[
vT

∂

∂θ

(
vT

∂L(X,Y ; θ)

∂θ

)]
= E

[
vT

∂

∂θ
f(X,Y, θ, v)

]
(10)

where f is a scalar function defined as

f(X,Y, θ, v) = vT
∂L(X,Y ; θ)

∂θ
(11)

The significance of equation (10) is that we split the intractable computation of the Hessian into two
parts that, we can see, are both extremely efficient to calculate. The first part is the scalar function
f only requiring the derivative of a scalar Loss (L(·)) with respect to a vector (θ) which is very
efficiently computed by Automatic Differentiation using Backpropagation, followed by a dot-product
vT ∂L(·)

∂θ . The second part of the computation is similarly a derivative of a scalar (f(·)) with respect
to a vector (θ) which is equivalently calculated through Backpropagation, followed by a simple
dot-product vT ∂f(·)

∂θ . Thus, the term inside the expectation only needs two backward propagation.

Two important hyperparameters arise from this procedure, firstly is itr which is the number of random
Gaussian vectors vi we need to sample and Backpropagate through until we consider the trace to be
well approximated, and secondly is rtr which is the fraction of the original size data that we use to
Backpropagate through since we can empirically see that the trace of the loss from a small fraction of
the data quickly converges to that of the entire dataset. For all our experiments, we set itr = 10 and
rtr = 0.1.

7.3 Trace error estimation

For the trace calculation in (10), each iteration we are drawing one sample from a distribution that
has mean equal to the trace we want. Thus we can do a simple analysis using Chebyshev’s inequality
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Figure 2: The number of samples needed (itr) to empirically calculate the trace up to a tolerate
of 10% (or ±1) with 95% confidence. Each box plot represents a model trained with a different
optimizer (SGD, Adam, AdaGrad, etc) and hyperparameters (lr, batch size, weight decay, etc) and
was trained for 100 epochs. Each boxplot is taken over the points (1 per epoch) which represents
the value of n as calculated in (14). Note that individual points are shown only when lying outside
of the boxplot whiskers which cover 1.5 ∗ IQR, such points represent outliers. The horizontal line
represents the global mean over all epochs and models. The top figure is calculated with values
ϵ = 10%, ϵabs = 1, and 1− δ = 95% and gives a global mean of 9.64. The bottom figure represent
relaxed conditions ϵ = 20%, ϵabs = 1, and 1− δ = 90% with a global mean of 3.78

to estimate how far we are from our goal depending on how many samples we draw.

P (|X − µ| ≥ kσ) ≤ 1

k2
(12)

P (|X̄ − µ| ≥ k) ≤ V ar[X̄]

k2
(13)

Where X̄ is the mean of itr samples from the distribution and is our approximation of the trace while
µ is the true value of the trace. For our choice of k, we intuitively want our approximation of the trace
to be at most ϵ percent away from the true trace with probability 1− δ. We optionally handle the case
when µ is (approximately) zero by considering an absolute error on the estimation. Thus, we get a
bound on how many samples we have to draw

P
((
|X̄ − µ| ≥ ϵabs

)
∩
(
|X̄ − µ| ≥ ϵ ∗ |µ|

))
(14)

=P (|X̄ − µ| ≥ max {ϵ ∗ |µ|, ϵabs}) ≤
V ar[X]

i2tr ∗max {ϵ2 ∗ µ2, ϵ2abs}
≤ δ (15)

itr ≥
σ[X]√

δ ∗max {ϵ ∗ |µ|, ϵabs}
(16)
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Figure 3: Convergence of our calculation of the maximum eigenvalue for different epochs of a
random model. The convergence is much sooner than 10 iterations for all different invocations.

We decided to choose ϵ = 10%, ϵabs = 1 and δ = 5%, which means that we want our approximation
to be within 10% of the actual trace (or ±1) with at least 95% confidence. We also pick another set
of values ϵ = 20%, ϵabs = 1, and 1− δ = 90% representing a set of more relaxed conditions.

Analytically calculating or bounding the variance of the random variable calculated in (10) is a very
challenging task as the hessian is a function of both the dataset and the model architecture, weight,
and indirectly, the optimizer. This analytical calculation of the variance is beyond the scope of this
paper. Additionally, µ is the true value of the trace which we obviously don’t have. However, we
can empirically calculate the mean and variance of vTAv by first fixing the dataset to CIFAR10 and
our model architecture to the aforementioned CNN. Then, we aggregate our experiments over 10
thousands epochs spanning 150 models with different hyperparameters and optimizers. Each epoch
we sample (10) several times (specifically 10 times) and use that sample to get an empirical mean
and standard deviation of the stochasticity of (10) to get an empirical value for n using (14).

In figure 2 we calculate the needed itr by using empirical estimate of (14), the two plots represent
the two set of conditions with the top representing the itr needed to obtain a more accurate value of
the trace. We can see that for the relaxed conditions, the average required itr ≥ 4 (represented by the
horizontal line). While for the stricter conditions itr ≥ 10

Note that the samples of vTAv from one epoch estimate the trace of the hessian at that specific epoch,
moving to the next epoch updates the weights which changes the hessian. Thus, for each epoch, our
empirical estimate of itr (a single point in 2) comes from random variable (estimates of (14)) that has
it’s own mean and standard deviation that has some interesting patterns but was left out due to brevity.

Our key takeaway is that itr = 10 is sufficient

7.4 Derivation of Maximum Eigenvalue Calculation

To calculate the maximum eigenvalue of the Hessian we employ the simple numerical eigenvalue
algorithm, Power Iteration.

To get the maximum eigenvalue (assuming uniqueness of the max) of a matrix A ∈ Rn×n. We start
from a random vector v0 ∈ Rn, we follow the recurrent relation

vi =
Avi−1

∥Avi−1∥
i ∈ {1, 2, · · · } (17)

The maximum eigenvalue is approximated by the Rayleigh quotient of vi for sufficiently large i.
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Figure 4: 4 random samples from CIFAR10. Top: original samples. Middle: Gaussian noise (0.1).
Bottom: Gaussian noise (0.25). The bottom row of images is what we consider as OOD samples, as
even to humans such samples are much harder to classify than the noiseless in-distribution samples

ρ(A) = lim
i→∞

vTi vi+1

vTi vi
= lim

i→∞

vTi vi+1

∥vi∥
= lim

i→∞

vTi vi+1

∥ Avi−1

∥Avi−1∥∥
= lim

i→∞
vTi vi+1 (18)

The rate of convergence for power iteration can be easily derived as
∣∣∣λ1(H(L,θ))
λ2(H(L,θ))

∣∣∣ where 1(·) is the
maximum eigenvalue and 2(·) is the second largest eigenvalue.

Then we derive an efficient implementation of vi by noting that we only need to define the dot-product
term Av which for the hessian becomes H(L, θ)v = ∂2L(X,Y ;θ)

∂θ2 v which as we derived in 10 is simply
the term ∂

∂θf(X,Y, θ, v) which is efficiently computed using Backpropagation. We are left with
similar hyperparameter choices as with the trace. ieig representing how many power-iterations to
apply, and reig for the size of the fraction of the data. for our experiemnts we set ieig = itr = 10 and
reig = rtr = 0.1

In figure 3 we see that for 100 different invocations of our maximum eigenvalue calculation, the
algorithm converges much sooner than the 10 steps we take, thus we can safely assume from this
empirical result that 10 steps of our algorithm will yield a fairly good approximation of the maximum
eigenvalue.

7.5 OOD noise

We simulate a distribution shift in our dataset by adding Gaussian noise with 0 mean and a standard
deviation of 0.25. Figure 4 gives a visualization of the level of noise that is added to simulate a
distribution shift. Even to a human the samples start to become much harder to identify the label they
belong to.

7.6 OOD Test Accuracy OLS

In figure 5 we visualize the linear relationship between the change in the maximum eigenvalue and the
change in the OOD Test Accuracy. We can see that for most epochs where the maximum eigenvalue
decreases (flatter loss landscape) the OOD Test Accuracy increases. This relationship makes intuitive
sense as flatter minima should be more robust for perturbations of the dataset (OOD).
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Figure 5: Ordinary least squares regression line where the indepenendent variable is the per-epoch
change in the maximum eigenvalue of the hessian (x-axis) and the dependent variable is the per-epoch
change in the Out of Distribution Test Accuracy. The negative relationship is as expected indicating
flatter loss landscapes generalize to slightly out of distribution samples.

Figure 6: Validation accuracy (blue line) and Trace (dashed red line) for 12 models across training.
For readability, a vertical line is placed at the epoch where the trace is mid-drop. For all models the
same vertical line intersects the roughly the same epoch where the validation accuracy reaches its
peak and plateaus.
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7.7 Sudden sharp drop phenomena

Conjecture 3 The sudden sharp decline in the trace of the hessian during training signifies that
training has stopped.

We have noticed that in many of our trained models there is a clear and distinct sharp decline in the
value of the trace that we refer to as the sharp drop phenomena. This phenomena is seemingly directly
linked with the stabilization in the validation and test accuracy. We conjecture that this phenomena is
linked with a stop in learning.

In figure 6 we provide 12 models that exhibit this phenomena during training. We superimpose in one
plot the value of the trace and the validation accuracy across the training epochs. The vertical line
is placed to visually illustrate the epoch in which the trace is in the middle of the drop phenomena.
For all models, this same line approximately intersects the spot in which the validation peaks and
plateaus.

This similar phenomena was alluded to or shown without an explicit discussion in previous works
Jastrzębski et al. [2019], ?, 2018]

One potential question for future work is the causality of this relationship, could we possibly delay this
dropping phenomena and cause the validation accuracy increasing? Possible future work could also
expand on this phenomena and possibly provide improvements to optimizers using this knowledge.

7.8 Counterargument to the Hessian

While many past works tend to point towards the same link between the hessian and the model’s
performance, other works seem to call into question the causal relationship between properties of the
hessian and the model’s generalizability.

Dinh et al. [2017] argue that, theoretically, popular definitions of the hessian’s flatness are somewhat
flawed and are separate from the model’s generalizability when considering the broad class of deep
neural networks with ReLU activations. In their third theorem, they analytically show that for
any non-zero local optima in the loss landscape, a transformation on the weights can generate an
equivalent model with an arbitrarily large spectrum by carefully manipulating the geometry of the
function. Additionally, their fifth theorem shows that there exists transformation to give an equivalent
model that contain (r) arbitrarily large eigenvalues (where r can be a large number even for thin and
deep NNs). Thus, the hessian would be sharp in multiple dimensions. This finding is in contrast
to Sagun et al. [2016] conjecture that over-parameterized models lead to hessian deficiency. Dinh
et al. [2017] concludes that using different definitions of flatness, generalizability and flatness are not
theoretically linked unless further assumptions are made.

Other works, such as Swirszcz et al. [2017], consider the characteristics of the loss landscape during
training for specific cases and datasets when learning fails. They highlight the importance of building
theoretical convergence theorems that handle different scenarios for the structure of the data instead
of divorcing the theory from the specifics of the data. These highlights are further supported by Lin
et al. [2017].

In a similar vein, Kaur et al. [2022] provide multiple findings that further question the relation
between the hessian and generalization. They show that there are several regimes where the maximum
eigenvalue of the hessian can be reduced while the model’s generalization only improves slightly
or none at all (such as when using large batch sizes). They also show that some techniques that are
detrimental to learning, such as an excessively large dropout rate, lead to poor generalizability while
still lowering the maximum eigenvalue. While other techniques, such as batch normalization, lead to
better generalization while not always lowering the maximum eigenvalue.
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