
Bayesian Recommender Systems

Abdulrahman Alabdulkareem1 and Sarah Alnegheimish1

1CSAIL, MIT

May 2023

Abstract

With the proliferation of data nowadays, recommendation systems have become instrumental
in filtering content for the user. These systems curate a set of personalized items to increase user
satisfaction. In movie recommendation systems, the algorithm searches for content that would
increase the user’s watch time. In this paper, we design a Bayesian model to tackle the problem.
Our goal is to predict the likelihood of a user liking an item. Experiments showed that our model
is able to perform competitively with machine learning models. Moreover, in high confidence
predictions, it surpasses them. However, the computational cost and lack of scalability of our
model currently poses a limitation to its usage.

1 Introduction

Recommender systems are powerful tools in modern-day platforms, including online shopping, enter-
tainment, and social media. Many companies such as Amazon, Netflix, and TikTok develop recommen-
dation algorithms to increase their purchases and screen time. These systems are designed to predict
users’ preferences and recommend items or content that are most relevant to them, thereby enhancing
user engagement and satisfaction. Many models have been developed to analyze large amounts of data
in order to build recommendation systems, such as clustering, linear regression, and more recently
deep learning.

In this project, we investigate a Bayesian methodology for predicting user preferences. We want
to predict whether a user would like a new item based on the user’s history. Using Bayesian model-
ing, we can improve on existing methods, such as quantifying uncertainty estimates in the predicted
recommendation. Furthermore, Bayesian models can be easier to interpret; therefore they can be bet-
ter at explaining predictions. For evaluation, we compare the model to simple baselines and existing
machine learning models. We provide an extensive evaluation of the recommendation system models
and identify the advantages and limitations of our Bayesian model. Moreover, we investigate areas in
which Bayesian methods could outperform modern ML methods.

The remainder of this report is organized as follows: Section 2 goes through some of the most
commonly known recommender systems algorithms. Our Bayesian model is illustrated in Section 3.
Next, we evaluate the Bayesian model in Section 4 where we highlight the quality and computation
performance of the Bayesian model. Lastly, we conclude in Section 5.

2 Related Work

Recommender systems algorithms can be categorized into: collaborative filtering approaches where
the algorithm uses the behavior of similar users to predict a user’s preferences; content-based filtering
where the algorithm recommends items that are similar to the features of ones a user has liked in
the past; matrix factorization where the algorithm reduces the dimensionality of the user-item matrix
to make recommendations; clustering where the algorithm groups users or items into clusters and

1

recommends items to users within the cluster. There are also hybrid approaches where the algorithm
combines multiple algorithms together.

One of the most cited papers in recommendation systems is by Koren et al [5]. The authors propose
matrix factorization methods for collaborative filtering to create a low-dimensional representation.
Their first model closely resembles singular value decomposition (SVD). However, SVD presented
challenges when there is a high portion of missing values, i.e. sparse matrix, which is often the case in
recommender systems. The authors also propose an alternative least squares (ALS) algorithm where
it directly models the observed rating. This approach avoids overfitting compared to SVD. Moreover,
it can be favorable with large data since it can be computed in parallel.

Recently, deep learning models have been introduced for recommendation [7]. For instance, multi-
layer perceptron (MLP) can be developed to model the nonlinear interactions between users and items.
Recurrent neural networks (RNN) take into account the temporal dynamics of content information.
In addition, convolutional neural networks (CNN) extract global and local features from visual and
textual information sources.

This project was originally based on the Condliff et al. work on mixed-effects Bayesian models [3].
The authors propose a Bayesian hierarchical modeling approach to find preferences of users. Their
goal is to compute whether a user will like an item based on its features. More concretely, Pi(L = 1 | f)
where Pi is the probability that the ith user will like (L = 1) the item represented by the feature vector
f . In Section 3.2, we will go through this model in detail.

3 Bayesian Model for Recommender Systems

In this section, we first describe the problem at hand. Second, we detail mixed-effects Bayesian
model. Third, we present our own Bayesian model with latent variables. Lastly, we compare the
aforementioned models.

3.1 Problem Description

We would like to investigate a Bayesian methodology for recommender systems. Given a set of users n
and a set of items m (such as books, movies, songs, etc), we want to predict if a user i ∈ [1, n] likes the
item j ∈ [1,m]. Each user has a feature vector of length q, and each item feature vector is of length p.

Given a sparse rating matrix Rn×m of n users and m items.

R =


r11 ? · · · ?
r21 r22 · · · r2m
? r32 · · · r3m
...

...
. . .

...
? rn2 · · · rnm


Where rij represents the rating that user i gave to movie j. Our objective is to hide some of the values
in rating matrix (held-out set) and be able to predict the held-out values in the matrix (symbolized
with ?) using the rest of the matrix.

3.2 Mixed-Effects Bayesian Model

The paper’s model is a mixed-effects Bayesian model [3]. They predict the log-odds that a user i likes
an item L = 1 based on the item feature vector f . This is given by the equation:

log
Pi(L = 1|f)
Pi(L = 0|f)

= log
Pi(L = 1)

Pi(L = 0)
+

p∑
k=1

log
Pi(fk = 1|L = 1)

Pi(fk = 1|L = 0)
(1)

Which arises from assuming that the item features fk are conditionally-independent and Pi(L = 1|f)
has a beta prior. Then, an important assumption is that Pi(fk = 1|L = 1) and Pi(fk = 1|L = 0) are

2

from a common distribution, which is an important part of Bayesian hierarchical modeling. Then the
log-odds of a feature given the user’s ratings is

log
Pi(fk = 1|L = 0)

Pi(fk = 0|L = 0)
= µik + ψik (2)

and

log
Pi(fk = 1|L = 1)

Pi(fk = 0|L = 1)
= µik + ψik + δik (3)

Where µik and δik are Bayesian model parameters with defined priors, and ψik = β0k + β0kxi1 +
· · · + βqkxiq where {xi1, · · · , xiq} are user features for user i. While the paper does not explicitly
mention where β comes from, we assumed that it was computed from a linear regression model that
was trained on predicting the fraction of liked items with feature fk by user i given user features x1...q
as input.

The above set of equations define prior distributions for Pi(fk = 1|L = 1) and Pi(fk = 1|L = 0)
for users i = 1, . . . , n and item features k = 1, . . . , p. Together with the beta prior distribution for
Pi(L = 1) we get Pi(L = 1|f) [3]. From there, we apply a sigmoid function on the log-odds to obtain
a probability of a new item Pi(L = 1|f) to be in the range [0, 1].

3.3 Latent Modeling Bayesian Model (Our Model)

 a

e

UE2,2
t

userlatenti

O_0
user i i i n TO 0

Ingenfsim
grating

item i i m

y
UE2,2

Figure 1: Model Graph

The inhering limitations of the mixed-effects
model (see Section 3.4) inspired the development
of this Latent Modeling Bayesian Model. This
Bayesian model learns a latent vector for each
user and each item that can capture intrinsic
correlations between them that are not present
in the user or item features. We note that this
model purposefully does not take input or make
use of the item features nor the user features,
instead all it takes as input is the user indices
i ∈ [1, n], item indices j ∈ [1,m], and of course
the sparse rating matrix.

Given a dataset that contains n users i ∈ [1, n]
and m items j ∈ [1,m], the model learns a d-
dimensional vector Li ∈ Rd for each user and
a d-dimensional vector Lj ∈ Rd for each item
where d is a hyperparameter. The prior on each
element of the set of vectors Li and set of vectors
Lj is U [−2, 2]1

Then, we define the log-odds of user i liking item j as similarity metric (simply a dot-product
divided by d) of those two vectors defined by:

logit (P (L = 1|user = i, item = j)) = simij =
LT
i Lj

d
(4)

Finally, we take the sigmoid of the log-odds to get our likelihood and prediction

P (L = 1|user = i, item = j) = sigmoid(simij) = sigmoid

(
LT
i Lj

d

)
(5)

1The choice of [-2, 2] for the prior was chosen computationally as the models almost never chose values outside of
this range, this also makes intuitive sense as the range of log-odds values we can get is -4 to 4 (if both latent vectors
took the maximum value of all 2’s) which give a likelihood range of ≈ −99% to ≈ 99% (when taking the sigmoid of the
log-odds)

3

In total, the model has (n ∗ d+m ∗ d) parameters which represent the n d-dimensional user latent
vectors and the m d-dimensional item latent vectors, where d is a hyperparameter.

3.4 Comparing Mixed-Effects Model to Latent Model

Mixed Effects Model Latent Model

0.4

0.6

0.8

1.0

1.2

F1
 S

co
re

0.99

0.91

0.71

0.88

0.5

0.9

F1 Scores on Varying Synthetic Datasets
All Item Features Visible (0% features hidden)
Item Features Partially Hidden (30% features hidden)
Item Features Mostly Hidden (80% features hidden)

Figure 2: F1 scores of both models on our synthetic
dataset where the rating is deterministic on the user
and item features. Blue: No item features were
hidden. Green: 30% of item features are hidden.
Red: 80% of item features are hidden.

Initial results of the mixed-effects model indi-
cate a significant gap between the performance
on our synthetic data compared to real data. On
the synthetic data where the rating for user i on
item j was determined (with little to no noise)
based on the fully visible user and item features,
the mixed-effects model was able to achieve im-
pressive metrics including an F1 score close to
99% on the held-out test set. However, when
we moved to any subset of the real datasets, the
model was barely able to achieve metrics above
random guessing even on the training set. This
significant gap between real-world and synthetic
data performance called for a deeper investiga-
tion.

A major indicator of the issue was that the
mixed-effects model was not able to capture any
knowledge about items or users that are not
present in the feature vector. In other words,
imagine if we pick from our data three different
items, e.g. items j = {5, 7, 12} that have the ex-
act same feature vector f and that items 5 and
7 consistently gets low ratings while item 12 gets
high ratings, then the model would not be able
to learn that correlation because the items have
the same feature vector and thus cannot learn relationships outside of that. This coupled with the
Naive-Bayes Assumption made on the feature vectors in Eq. (1) means the model is also not able to
detect correlations within item features.

We investigated this hypothesis by creating a slightly different synthetic dataset where each item
had its visible feature vector provided to the model and a hidden feature vector not provided to the
model, then the rating depended on a combination of the two. The model achieves a much lower F1
score on this modified synthetic dataset2.

This flaw of the mixed-effects model is exacerbated when learning from the real datasets we evaluate
on which contain structure beyond the superficial and low-resolution features. This inherent lack of
capability to model beyond the feature is what inspired our latent model in Section 3.3 which was
capable of capturing hidden features beyond the visible features in the dataset. We report the F1
score of the mixed-effects model alongside the latent model in Figure 2. We note that the latent
model, as mentioned in Section 3.3, does not accept as input the user or item features which is why
the latent model doesn’t change in performance when varying the amount of hidden features.

We note that the poor performance of the mixed effects model on real datasets is consistent with
the results mentioned in the original paper [3], where the model achieved 56% accuracy on EachMovie
data. Moving forward, we adopt our latent Bayesian model for our experiments.

4 Evaluation

In this section, we provide results of our evaluation. We first describe the datasets we are utilizing,
then we report the performance of our models alongside other benchmarks.

2The F1 score drops lower as we increase the dependence on the hidden features. Once the dependence was higher
than some threshold, our benchmarks show that even predicting the mean per-item would achieve a better result.

4

Each Movie Anime MovieLens

Items 1,623 8,520 1,681
Users 61,265 68,048 943
Ratings 2,811,983 4,059,564 100,000
User features 3 0 0

Item features 14 (genres)
22 (genres)

20 (genres)
3 (continuous)

Rating Scale 1-5 1-10 1-5
Sparsity % 97.2% 99.3% 93.7%

Table 1: Datasets Properties

Datasets. We utilize three real datasets for evaluation. We first use the dataset described in [3],
which is from the Each Movie database 3. The paper utilizes only a subset of the mentioned dataset.
For a more extensive evaluation, we adopt MovieLens 4 datasets. MovieLens is a stable benchmark
dataset for movie ratings, we use the 100k dataset. Lastly, we use the Anime dataset 5 which contains
anime ratings for users. Table 1 summarizes the properties of these three datasets. We also construct
a synthetic dataset with varying # of users and items.

Before directly using the data, we needed to process the data to generate features that would be
beneficial to model prediction. Different data sources posses different information and therefore the
features used in each dataset is different. Some of the calculated features include: the average rating
of an item, the year the item was released, the average rating of a user, the top liked genre for a user,
etc. Most datasets contain ratings as a continuous value, to make this problem a classification one, we
threshold the ratings according to the median value. Moreover, for fair comparison, we subset the data
based on the number of users and items since Bayesian models take longer with large datasets. We
split the data into training, validation, and testing with a 80/10/10 division. In addition, all the data
is curated such that both classes L = 0 and L = 1 are balanced in training, validation, and testing.
Models. For our evaluation, so far, we have adopted 6 models to compare against. The top 3
are simple baselines and the other 3 are machine learning models. Item Mean (IM) which is
predicting the average rating per item. This model assumes that all users will have the same rating
for each item. User Mean (UM) which is predicting the average rating per user. This model is will
predict a constant value for each user across any item. Item User Mean (IUM) which is taking
the average between the two baselines above. Linear Regression (LR) which is a simple linear
regression model built to predict ratings from user and item features. XGBoost Regressor (XGB)
which is a gradient boosting algorithm. Similar to linear regression, XGBoost predicts ratings from
user and item features. Multilayer Perceptron (MLP) which is a feed-forward neural network with
5 dense layers. The first two layers are followed by a dropout layer to reduce overfitting. Moreover,
the network features an embedding layer for both user and item inputs.

For implementation of the Bayesian model, we use the PyMC python framework. For learning our
parameters, we use HMC[2] with the No U-Turn Sampler[4]. We run 5 parallel chains which achieves
better results over one or two chians and gives us the ability to more easily verify whether we have
converged or need to sample more from our posterior.

4.1 Benchmark

Figure 3 illustrates the results of our experiments. The plot depicts the accuracy and precision scores
on test data for each model across the four datasets with users = 100 and items = 100. Immediately
we notice that our Bayesian model is comparable to ML models. The best model overall is MLP and
XGB and Bayesian are able to reach the same performance on both accuracy and precision. Moreover,
we see that the performance on real datasets differs from the synthetic one. This suggests that the

3http://www.research.digital.com/src/eachmovie/
4https://grouplens.org/datasets/movielens/
5https://www.kaggle.com/datasets/CooperUnion/anime-recommendations-database

5

http://www.research.digital.com/src/eachmovie/
https://grouplens.org/datasets/movielens/
https://www.kaggle.com/datasets/CooperUnion/anime-recommendations-database

0.5

0.6

0.7

0.8

0.9
A

cc
ur

ac
y

Eachmovie Anime Movielens Synthetic

Ite
m

 M
ea

n

U
se

r M
ea

n

Ite
m

 U
se

r M
ea

n

LR

X
G

B

M
LP

O
ur

 M
od

el

Model

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

on

Eachmovie

Ite
m

 M
ea

n

U
se

r M
ea

n

Ite
m

 U
se

r M
ea

n

LR

X
G

B

M
LP

O
ur

 M
od

el
Model

Anime

Ite
m

 M
ea

n

U
se

r M
ea

n

Ite
m

 U
se

r M
ea

n

LR

X
G

B

M
LP

O
ur

 M
od

el

Model

Movielens

Ite
m

 M
ea

n

U
se

r M
ea

n

Ite
m

 U
se

r M
ea

n

LR

X
G

B

M
LP

O
ur

 M
od

el

Model

Synthetic

Figure 3: Benchmark results of models with accuracy and precision scores

synthetic data is not representative of real-world settings and explains why in some cases models
struggle with real data. F1 and recall scores are presented in Table 2 in the Appendix.

4.1.1 XGB vs Our Model

Gradient boosting trees are considered one of the most commonly adopted models in industry given
their state-of-the-art performance [1]. In our experiments, XGB (avg. accuracy = 0.72, avg. precision
= 0.72) and our Bayesian model (avg. accuracy = 0.74, avg. precision = 0.73) produce competitive
results. The differences between the accuracy and precision is miniscule, so what does our model give?
One important feature of Bayesian modeling is confidence. Therefore, we inspect the performance of
both models on their most confident predictions. Figure 4a showcases the precision scores for the top
50 predictions. We can see that when our Bayesian model is confident, it is highly reliable compared
to XGB. This is especially true for the EachMovie and MovieLens datasets.

XGB Our Model

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

P
re

ci
si

on

Top 50 Most Confident Predictions

Eachmovie
Anime
Movielens

(a)

Eachmovie Anime Movielens Synthetic

10
1

10
0

10
1

10
2

S
ec

on
ds

 (L
og

 S
ca

le
)

Wall Time (s)

Item Mean
User Mean
Item User Mean
LR
XGB
MLP
Our Model

(b)

Figure 4: (a) Precision of 50 most confident predictions in our model and XGB. (b) Wall Time (s) of
all models. Our Bayesian model takes slightly less than 1.5 minutes to train.

6

Interpretability of Latent Vectors

34% drama

22% drama

15% drama

10% drama

28%
comedy

54%
comedy

62%
comedy

76%
comedy

*Genre data
was not

provided to
the model

Figure 5: T-SNE projection of the item latent vector learns by our Bayesian model, the colors are from
K-means cluster with 4 clusters. Note that the model does not accept as input the item genres and the
latent space is learnt solely from the ratings. Left: The percentage of Comedy shows in each cluster.
Right: The percentage of Drama shows in each cluster. The red cluster has the highest concentration
of Drama shows and lowest concentration of Comedy shows. The relationship is reversed in the blue
cluster, while the orange and yellow clusters are in-between.

4.1.2 Runtime

An important dimension to models is their execution time (wall time). Bayesian models are notorious
for taking a large amount of time and our model is no different. Figure 4b illustrates the runtime of
all models in the benchmark. Evidently, the Bayesian model takes the longest amount of time with
almost 1.5 minutes to compute the posterior and sample via NUTS. This is a clear drawback to our
model. Moreover, when testing the runtime of our model under varying the number of users and the
number of items, we see how badly the computational cost becomes. As we double the amount of
users, the wall time almost doubles as well (from 1.5 minutes to slightly under 3). More scalability
experiments are shown in Figure 7 in the Appendix. This presents a serious challenge to the usability
of our model.

4.2 Interpretability

We attempt to investigate the latent space that the model learns for the items, we take the latent
vectors for each item Lj ∈ Rd where j ∈ [1,m] and we calculate the cosine similarity between each
pair of vectors which results in a Rm×m similarity matrix such that row j is the similarity between
the latent vector of item j and all others item latent vectors6. We perform a T-SNE projection of
the similarity matrix and apply K-means clustering to produce the result in Figure 5. The two plots
in Figure 5 represent the percentage of items in each cluster for two item features that we randomly
chose (comedy and drama). We find that the different clusters have very different distributions of item
genres such that the red cluster has a much higher concentration of drama items and lower comedy
items compared to the other clusters. This trend reverses as we move from the red cluster to the
orange, yellow, and then finally blue where the trend flips.

We emphasize that the model does not accept as input the item genres and that the latent space
is learnt solely from the ratings.

6We obtain this similarity matrix for each chain and each timestep of our sampling. We take the average of all of
those.

7

4.3 Convergence

2 1 0 1 2
simij

de
ns

ity
Kernel Density Estimate for simij, for i=226

j=2
j=27
j=36

(a)

0 200 400 600 800 1000 1200
Rank (all chains)

0

1

2

3

4

Ch
ai

n

Rank Plot for simij, i=226 j=2

0 200 400 600 800 1000 1200
Rank (all chains)

0

1

2

3

4

Ch
ai

n

Rank Plot for simij, i=226 j=36

(b)

Figure 6: (a) Kernel density estimates for sim values. (b) Rank plot.

To check that our model has converged and sufficiently explored the parameter space, we plot the
kernel density estimate (KDE) of certain values in the chain across all time steps, such as in Figure 6a
where we plot the KDE of the variable simij from Eq. (4) for certain random values (here we chose
the user i = 226 and items j = {2, 27, 36}). We note that the KDE of simij for each of the 5 chains is
plotted with a slightly different linestyle and that we can confirm that the model hasn’t converged if the
different KDE’s for the same variable simij do not look alike. In Figure 6a we can more confidently say
that our model has converged and predicts that user i = 226 seems to slightly dislike item j = 2 while
liking item j = 36, with j = 27 in-between. As another diagnostic, we use rank plots as mentioned in
[6] and displayed in Figure 6b to check whether the chains have sufficiently mixed which is indicated
by the different chains having close to uniform rank plots. Finally we note that our model does not
appear to have any diverging samples as reported by NUTS.

5 Conclusion

In this project, we develop a Bayesian model for predicting which users would like an item given data
of previously liked items. We leverage the power of Bayesian learning to build a latent model that
can capture the latent features of users and items and predict with a given confidence whether a given
user would like an item. We have evaluated our model with several other benchmark models includ-
ing Multilayer Perceptrons (MLP) and gradient boosting algorithms (XGB). Our model consistently
achieves good results when compared to these benchmarks and outperforms them when the model is
confident.

One drawback we have constantly identified with our proposed Bayesian model is the increasing
time complexity as the data grows which causes the failure to scale to extremely large datasets. One
future improvement could be to parallelize the training of the model such that it can handle orders of
magnitude more data. We hypothesize that this parallelization could be successfully achieved through
alternate training of either the set of item or user feature vectors while keeping the other fixed. Holding
one of the two fixed means that all the the model parameters that are currently training are mutually
independent which can thus be split into different machines to run in parralel. We leave this as future
work.

References

[1] Anghel, A., Papandreou, N., Parnell, T. P., Palma, A. D., and Pozidis, H. Bench-
marking and optimization of gradient boosted decision tree algorithms. CoRR abs/1809.04559
(2018).

[2] Betancourt, M. A conceptual introduction to hamiltonian monte carlo. arXiv preprint
arXiv:1701.02434 (2017).

8

[3] Condliff, M. K., Lewis, D. D., Madigan, D., and Posse, C. Bayesian mixed-effects models
for recommender systems. In ACM SIGIR (1999), vol. 99, Citeseer, pp. 23–30.

[4] Hoffman, M. D., Gelman, A., et al. The no-u-turn sampler: adaptively setting path lengths
in hamiltonian monte carlo. J. Mach. Learn. Res. 15, 1 (2014), 1593–1623.

[5] Koren, Y., Bell, R., and Volinsky, C. Matrix factorization techniques for recommender
systems. Computer 42, 8 (2009), 30–37.

[6] Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., and Bürkner, P.-C. Rank-
normalization, folding, and localization: An improved r for assessing convergence of mcmc (with
discussion). Bayesian analysis 16, 2 (2021), 667–718.

[7] Zhang, S., Yao, L., Sun, A., and Tay, Y. Deep learning based recommender system: A survey
and new perspectives. ACM computing surveys (CSUR) 52, 1 (2019), 1–38.

6 Appendix

EachMovie Anime MovieLens Synthetic

Model µ σ µ σ µ σ µ σ

IM 0.679 0.017 0.665 0.011 0.679 0.016 0.619 0.035
UM 0.662 0.014 0.671 0.012 0.686 0.015 0.223 0.027
IUM 0.722 0.014 0.665 0.011 0.673 0.014 0.188 0.018
LR 0.558 0.058 0.488 0.023 0.589 0.025 0.518 0.022
XGB 0.667 0.015 0.726 0.018 0.668 0.019 0.831 0.008
MLP 0.704 0.022 0.755 0.015 0.715 0.017 0.861 0.011
Our Model 0.707 0.013 0.753 0.013 0.701 0.019 0.846 0.010

Table 2: Mean (µ) F1 Scores and standard deviation (σ) on test data with users = 100 and items =
100. Results were obtained from 20 independent runs.

EachMovie Anime MovieLens Synthetic

Model µ σ µ σ µ σ µ σ

IM 0.744 0.022 1.000 0.000 0.982 0.006 0.463 0.045
UM 0.766 0.025 0.999 0.002 0.979 0.011 0.132 0.017
IUM 0.818 0.016 1.000 0.000 0.998 0.001 0.104 0.009
LR 0.580 0.114 0.423 0.022 0.602 0.035 0.527 0.062
XGB 0.653 0.023 0.718 0.023 0.656 0.026 0.825 0.008
MLP 0.697 0.039 0.765 0.057 0.742 0.046 0.865 0.037
Our Model 0.713 0.012 0.760 0.017 0.755 0.021 0.847 0.011

Table 3: Mean (µ) recall scores and standard deviation (σ) on test data with users = 100 and
items = 100. Results were obtained from 20 independent runs.

9

Users

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Users

0.6

0.7

0.8

0.9
P

re
ci

si
on

Users

60

80

100

120

140

160

Ti
m

e
(s

)

50 100 150 200 250
Items

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

50 100 150 200 250
Items

0.6

0.7

0.8

0.9

P
re

ci
si

on

50 100 150 200 250
Items

60

80

100

120

140

160
Ti

m
e

(s
)

Eachmovie Anime Movielens Synthetic

Figure 7: Scaling # users and # items and reporting accuracy, precision, and runtime. In the first
row, we keep the # items fixed at 100. In the second row, we keep the # user fixed at 100. The
performance (accuracy, recall) slightly increases as the training data increases, whether when looking
at number of users or items. However, the runtime significantly increases as the dimension of the data
increases.

10

	Introduction
	Related Work
	Bayesian Model for Recommender Systems
	Problem Description
	Mixed-Effects Bayesian Model
	Latent Modeling Bayesian Model (Our Model)
	Comparing Mixed-Effects Model to Latent Model

	Evaluation
	Benchmark
	XGB vs Our Model
	Runtime

	Interpretability
	Convergence

	Conclusion
	Appendix

